IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v253y2019ic32.html
   My bibliography  Save this article

An optimal electric vehicle investment model for consumers using total cost of ownership: A real option approach

Author

Listed:
  • Moon, Saedaseul
  • Lee, Deok-Joo

Abstract

Electric vehicles (EVs) are considered as an effective solution in achieving a low-carbon society. One of the major hurdles to EV diffusion is consumer ignorance. That is, consumers generally consider only the initial purchase price, not knowing the total life cycle cost in terms of long-term operational cost savings. The purpose of this study is to develop a consumer-based optimal electric vehicle investment model using total cost of ownership (TCO) which is the actual total cost paid by consumers from acquisition to disposal. Especially, this model includes the recent rapid technological advances in EVs and high volatility of oil prices. To quantify the economic value of the options of consumer's decision, we estimated the TCO of vehicles. Specifically, to provide practical results to consumers, we used the empirical data from the Korean automobile market to evaluate the economic value of TCO. Using the proposed investment model with empirical data, we derived an optimal decision path as a function of time, considering oil price uncertainty and technological advancements, by analyzing a binomial lattice model to identify the optimal timing of adoption. We found that even without subsidies, EVs are more cost-effective than internal combustion engine vehicles (ICEVs) at the current fuel price level, and are still cost-effective even if the current fuel price decreases 20% further in the Korean market. And as the fluctuation of fuel price becomes more stable, consumer preference to EV products should increase.

Suggested Citation

  • Moon, Saedaseul & Lee, Deok-Joo, 2019. "An optimal electric vehicle investment model for consumers using total cost of ownership: A real option approach," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
  • Handle: RePEc:eee:appene:v:253:y:2019:i:c:32
    DOI: 10.1016/j.apenergy.2019.113494
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261919311687
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2019.113494?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tseng, Hui-Kuan & Wu, Jy S. & Liu, Xiaoshuai, 2013. "Affordability of electric vehicles for a sustainable transport system: An economic and environmental analysis," Energy Policy, Elsevier, vol. 61(C), pages 441-447.
    2. van Velzen, Arjan & Annema, Jan Anne & van de Kaa, Geerten & van Wee, Bert, 2019. "Proposing a more comprehensive future total cost of ownership estimation framework for electric vehicles," Energy Policy, Elsevier, vol. 129(C), pages 1034-1046.
    3. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    4. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Total cost of ownership, payback, and consumer preference modeling of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 103(C), pages 488-506.
    5. Wu, Geng & Inderbitzin, Alessandro & Bening, Catharina, 2015. "Total cost of ownership of electric vehicles compared to conventional vehicles: A probabilistic analysis and projection across market segments," Energy Policy, Elsevier, vol. 80(C), pages 196-214.
    6. Zhao, Xin & Doering, Otto C. & Tyner, Wallace E., 2015. "The economic competitiveness and emissions of battery electric vehicles in China," Applied Energy, Elsevier, vol. 156(C), pages 666-675.
    7. Naasz, Elizabeth & Jablonski, Becca B.R. & Thilmany, Dawn, 2018. "State Branding Programs and Local Food Purchases," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 33(3), September.
    8. Vora, Ashish P. & Jin, Xing & Hoshing, Vaidehi & Saha, Tridib & Shaver, Gregory & Varigonda, Subbarao & Wasynczuk, Oleg & Tyner, Wallace E., 2017. "Design-space exploration of series plug-in hybrid electric vehicles for medium-duty truck applications in a total cost-of-ownership framework," Applied Energy, Elsevier, vol. 202(C), pages 662-672.
    9. Krause, Rachel M. & Carley, Sanya R. & Lane, Bradley W. & Graham, John D., 2013. "Perception and reality: Public knowledge of plug-in electric vehicles in 21 U.S. cities," Energy Policy, Elsevier, vol. 63(C), pages 433-440.
    10. Lubinda F. Walubita & Dagbegnon Clement Sohoulande Djebou & Abu N. M. Faruk & Sang Ick Lee & Samer Dessouky & Xiaodi Hu, 2018. "Prospective of Societal and Environmental Benefits of Piezoelectric Technology in Road Energy Harvesting," Sustainability, MDPI, vol. 10(2), pages 1-13, February.
    11. Bubeck, Steffen & Tomaschek, Jan & Fahl, Ulrich, 2016. "Perspectives of electric mobility: Total cost of ownership of electric vehicles in Germany," Transport Policy, Elsevier, vol. 50(C), pages 63-77.
    12. Guthrie, Graeme, 2009. "Real Options in Theory and Practice," OUP Catalogue, Oxford University Press, number 9780195380637, Decembrie.
    13. Dumortier, Jerome & Siddiki, Saba & Carley, Sanya & Cisney, Joshua & Krause, Rachel M. & Lane, Bradley W. & Rupp, John A. & Graham, John D., 2015. "Effects of providing total cost of ownership information on consumers’ intent to purchase a hybrid or plug-in electric vehicle," Transportation Research Part A: Policy and Practice, Elsevier, vol. 72(C), pages 71-86.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aryanpur, Vahid & Balyk, Olexandr & Daly, Hannah & Ó Gallachóir, Brian & Glynn, James, 2022. "Decarbonisation of passenger light-duty vehicles using spatially resolved TIMES-Ireland Model," Applied Energy, Elsevier, vol. 316(C).
    2. Armando Cartenì & Ilaria Henke & Clorinda Molitierno & Luigi Di Francesco, 2020. "Strong Sustainability in Public Transport Policies: An e-Mobility Bus Fleet Application in Sorrento Peninsula (Italy)," Sustainability, MDPI, vol. 12(17), pages 1-19, August.
    3. Kondev, Bozhil & Dixon, James & Zhou, Zhaoqi & Sabyrbekov, Rahat & Sultanaliev, Kanat & Hirmer, Stephanie A., 2023. "Putting the foot down: Accelerating EV uptake in Kyrgyzstan," Transport Policy, Elsevier, vol. 131(C), pages 87-96.
    4. Ahmed, Abdelsalam A. & Ramadan, Haitham S., 2020. "Prototype implementation of advanced electric vehicles drivetrain system: Verification and validation," Applied Energy, Elsevier, vol. 266(C).
    5. Tamba, Marie & Krause, Jette & Weitzel, Matthias & Ioan, Raileanu & Duboz, Louison & Grosso, Monica & Vandyck, Toon, 2022. "Economy-wide impacts of road transport electrification in the EU," Technological Forecasting and Social Change, Elsevier, vol. 182(C).
    6. Paolo Falbo & Giorgio Ferrari & Giorgio Rizzini & Maren Diane Schmeck, 2021. "Optimal switch from a fossil-fueled to an electric vehicle," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 1147-1178, December.
    7. Bamidele Victor Ayodele & Siti Indati Mustapa, 2020. "Life Cycle Cost Assessment of Electric Vehicles: A Review and Bibliometric Analysis," Sustainability, MDPI, vol. 12(6), pages 1-17, March.
    8. Jingjing Jia & Shujie Ma & Yixi Xue & Deyang Kong, 2020. "Life-Cycle Break-Even Analysis of Electric Carsharing: A Comparative Study in China," Sustainability, MDPI, vol. 12(16), pages 1-29, August.
    9. Zhou, Kaile & Cheng, Lexin & Lu, Xinhui & Wen, Lulu, 2020. "Scheduling model of electric vehicles charging considering inconvenience and dynamic electricity prices," Applied Energy, Elsevier, vol. 276(C).
    10. Tomislav Erdelić & Tonči Carić, 2022. "Goods Delivery with Electric Vehicles: Electric Vehicle Routing Optimization with Time Windows and Partial or Full Recharge," Energies, MDPI, vol. 15(1), pages 1-27, January.
    11. Paolo Falbo & Giorgio Ferrari & Giorgio Rizzini & Maren Diane Schmeck, 2020. "Optimal switch from a fossil-fueled to an electric vehicle," Papers 2012.09493, arXiv.org.
    12. Krzysztof KRAWIEC, 2021. "Vehicle Cycle Hierarchization Model To Determine The Order Of Battery Electric Bus Deployment In Public Transport," Transport Problems, Silesian University of Technology, Faculty of Transport, vol. 16(1), pages 99-112, March.
    13. Fabio Luis Marques dos Santos & Paolo Tecchio & Fulvio Ardente & Ferenc Pekár, 2021. "User Automotive Powertrain-Type Choice Model and Analysis Using Neural Networks," Sustainability, MDPI, vol. 13(2), pages 1-15, January.
    14. Amela Ajanovic & Reinhard Haas, 2020. "On the economics and the future prospects of battery electric vehicles," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(6), pages 1151-1164, December.
    15. Lawrence Fulton, 2020. "A Publicly Available Simulation of Battery Electric, Hybrid Electric, and Gas-Powered Vehicles," Energies, MDPI, vol. 13(10), pages 1-15, May.
    16. Casper Boongaling Agaton & Angelie Azcuna Collera & Charmaine Samala Guno, 2020. "Socio-Economic and Environmental Analyses of Sustainable Public Transport in the Philippines," Sustainability, MDPI, vol. 12(11), pages 1-14, June.
    17. Hao, Xu & Lin, Zhenhong & Wang, Hewu & Ou, Shiqi & Ouyang, Minggao, 2020. "Range cost-effectiveness of plug-in electric vehicle for heterogeneous consumers: An expanded total ownership cost approach," Applied Energy, Elsevier, vol. 275(C).
    18. Burd, Joshua Thomas Jameson & Moore, Elizabeth A. & Ezzat, Hesham & Kirchain, Randolph & Roth, Richard, 2021. "Improvements in electric vehicle battery technology influence vehicle lightweighting and material substitution decisions," Applied Energy, Elsevier, vol. 283(C).
    19. Nie, Qingyun & Zhang, Lihui & Tong, Zihao & Hubacek, Klaus, 2022. "Strategies for applying carbon trading to the new energy vehicle market in China: An improved evolutionary game analysis for the bus industry," Energy, Elsevier, vol. 259(C).
    20. Malima, Gabriel Clement & Moyo, Francis, 2023. "Are electric vehicles economically viable in sub-Saharan Africa? The total cost of ownership of internal combustion engine and electric vehicles in Tanzania," Transport Policy, Elsevier, vol. 141(C), pages 14-26.
    21. Hao Qiang & Rui Ou & Yanchun Hu & Zhenyu Wu & Xiaohua Zhang, 2023. "Path Planning of an Electric Vehicle for Logistics Distribution Considering Carbon Emissions and Green Power Trading," Sustainability, MDPI, vol. 15(22), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Breetz, Hanna L. & Salon, Deborah, 2018. "Do electric vehicles need subsidies? Ownership costs for conventional, hybrid, and electric vehicles in 14 U.S. cities," Energy Policy, Elsevier, vol. 120(C), pages 238-249.
    2. Hao, Xu & Lin, Zhenhong & Wang, Hewu & Ou, Shiqi & Ouyang, Minggao, 2020. "Range cost-effectiveness of plug-in electric vehicle for heterogeneous consumers: An expanded total ownership cost approach," Applied Energy, Elsevier, vol. 275(C).
    3. Scorrano, Mariangela & Danielis, Romeo & Giansoldati, Marco, 2020. "Dissecting the total cost of ownership of fully electric cars in Italy: The impact of annual distance travelled, home charging and urban driving," Research in Transportation Economics, Elsevier, vol. 80(C).
    4. Santos, Georgina & Rembalski, Sebastian, 2021. "Do electric vehicles need subsidies in the UK?," Energy Policy, Elsevier, vol. 149(C).
    5. Schwab, Julia & Sölch, Christian & Zöttl, Gregor, 2022. "Electric Vehicle Cost in 2035: The impact of market penetration and charging strategies," Energy Economics, Elsevier, vol. 114(C).
    6. Makena Coffman & Paul Bernstein & Sherilyn Wee, 2017. "Electric vehicles revisited: a review of factors that affect adoption," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 79-93, January.
    7. Shafiei, Ehsan & Davidsdottir, Brynhildur & Fazeli, Reza & Leaver, Jonathan & Stefansson, Hlynur & Asgeirsson, Eyjolfur Ingi, 2018. "Macroeconomic effects of fiscal incentives to promote electric vehicles in Iceland: Implications for government and consumer costs," Energy Policy, Elsevier, vol. 114(C), pages 431-443.
    8. Seunghoon Lee & Young Hoon Lee & Yongho Choi, 2019. "Project Portfolio Selection Considering Total Cost of Ownership in the Automobile Industry," Sustainability, MDPI, vol. 11(17), pages 1-17, August.
    9. Cox, Brian & Bauer, Christian & Mendoza Beltran, Angelica & van Vuuren, Detlef P. & Mutel, Christopher L., 2020. "Life cycle environmental and cost comparison of current and future passenger cars under different energy scenarios," Applied Energy, Elsevier, vol. 269(C).
    10. Ouyang, Danhua & Zhou, Shen & Ou, Xunmin, 2021. "The total cost of electric vehicle ownership: A consumer-oriented study of China's post-subsidy era," Energy Policy, Elsevier, vol. 149(C).
    11. Coffman, Makena & Bernstein, Paul & Wee, Sherilyn, 2017. "Integrating electric vehicles and residential solar PV," Transport Policy, Elsevier, vol. 53(C), pages 30-38.
    12. Palmer, Kate & Tate, James E. & Wadud, Zia & Nellthorp, John, 2018. "Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan," Applied Energy, Elsevier, vol. 209(C), pages 108-119.
    13. Gábor Horváth & Attila Bai & Sándor Szegedi & István Lázár & Csongor Máthé & László Huzsvai & Máté Zakar & Zoltán Gabnai & Tamás Tóth, 2023. "A Comprehensive Review of the Distinctive Tendencies of the Diffusion of E-Mobility in Central Europe," Energies, MDPI, vol. 16(14), pages 1-29, July.
    14. Zhou, Kaile & Cheng, Lexin & Lu, Xinhui & Wen, Lulu, 2020. "Scheduling model of electric vehicles charging considering inconvenience and dynamic electricity prices," Applied Energy, Elsevier, vol. 276(C).
    15. Mariangela Scorrano & Terje Andreas Mathisen & Marco Giansoldati, 2019. "Is electric car uptake driven by monetary factors? A total cost of ownership comparison between Norway and Italy," ECONOMICS AND POLICY OF ENERGY AND THE ENVIRONMENT, FrancoAngeli Editore, vol. 0(2), pages 99-132.
    16. Safari, M., 2018. "Battery electric vehicles: Looking behind to move forward," Energy Policy, Elsevier, vol. 115(C), pages 54-65.
    17. Diao, Qinghua & Sun, Wei & Yuan, Xinmei & Li, Lili & Zheng, Zhi, 2016. "Life-cycle private-cost-based competitiveness analysis of electric vehicles in China considering the intangible cost of traffic policies," Applied Energy, Elsevier, vol. 178(C), pages 567-578.
    18. Ranjit R. Desai & Eric Hittinger & Eric Williams, 2022. "Interaction of Consumer Heterogeneity and Technological Progress in the US Electric Vehicle Market," Energies, MDPI, vol. 15(13), pages 1-25, June.
    19. Danielis, Romeo & Giansoldati, Marco & Scorrano, Mariangela, 2019. "Consumer- and society-oriented cost of ownership of electric and conventional cars in Italy," Working Papers 19_3, SIET Società Italiana di Economia dei Trasporti e della Logistica.
    20. Nienhueser, Ian Andrew & Qiu, Yueming, 2016. "Economic and environmental impacts of providing renewable energy for electric vehicle charging – A choice experiment study," Applied Energy, Elsevier, vol. 180(C), pages 256-268.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:253:y:2019:i:c:32. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.