IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v212y2018icp704-719.html
   My bibliography  Save this article

Sustainable silicon photovoltaics manufacturing in a global market: A techno-economic, tariff and transportation framework

Author

Listed:
  • Castellanos, Sergio
  • Santibañez-Aguilar, José E.
  • Shapiro, Benjamin B.
  • Powell, Douglas M.
  • Peters, Ian M.
  • Buonassisi, Tonio
  • Kammen, Daniel M.
  • Flores-Tlacuahuac, Antonio

Abstract

Solar photovoltaics (PV) manufacturing has experienced dramatic worldwide growth in recent years, enabling a reduction in module costs, and a higher adoption of these technologies. Continued sustainable price reductions, however, require strategies focused in further technological innovation, minimization of capital expenditures, and optimization of supply chain flows. We present a framework: Techno-economic Integrated Tool For Tariff And Transportation (TIT-4-TAT), that enables the study of these different strategies by coupling a techno-economic model with a tariff and transportation algorithm to optimize supply chain layouts for PV manufacturing under equally-weighted objectives.

Suggested Citation

  • Castellanos, Sergio & Santibañez-Aguilar, José E. & Shapiro, Benjamin B. & Powell, Douglas M. & Peters, Ian M. & Buonassisi, Tonio & Kammen, Daniel M. & Flores-Tlacuahuac, Antonio, 2018. "Sustainable silicon photovoltaics manufacturing in a global market: A techno-economic, tariff and transportation framework," Applied Energy, Elsevier, vol. 212(C), pages 704-719.
  • Handle: RePEc:eee:appene:v:212:y:2018:i:c:p:704-719
    DOI: 10.1016/j.apenergy.2017.12.047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917317622
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S. & Rodríguez, José M. & Muñoz, Antonio, 2017. "Cost analysis of solar thermal power generators based on parabolic dish and micro gas turbine: Manufacturing, transportation and installation," Applied Energy, Elsevier, vol. 194(C), pages 108-122.
    2. Veysey, Jason & Octaviano, Claudia & Calvin, Katherine & Martinez, Sara Herreras & Kitous, Alban & McFarland, James & van der Zwaan, Bob, 2016. "Pathways to Mexico’s climate change mitigation targets: A multi-model analysis," Energy Economics, Elsevier, vol. 56(C), pages 587-599.
    3. Haller, Markus & Ludig, Sylvie & Bauer, Nico, 2012. "Decarbonization scenarios for the EU and MENA power system: Considering spatial distribution and short term dynamics of renewable generation," Energy Policy, Elsevier, vol. 47(C), pages 282-290.
    4. Zou, Hongyang & Du, Huibin & Ren, Jingzheng & Sovacool, Benjamin K. & Zhang, Yongjie & Mao, Guozhu, 2017. "Market dynamics, innovation, and transition in China's solar photovoltaic (PV) industry: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 197-206.
    5. Pincus, J J, 1975. "Pressure Groups and the Pattern of Tariffs," Journal of Political Economy, University of Chicago Press, vol. 83(4), pages 757-778, August.
    6. Claudia Kemfert & Petra Opitz & Thure Traber & Lars Handrich, 2015. "Deep Decarbonization in Germany: A Macro-Analysis of Economic and Political Challenges of the 'Energiewende' (Energy Transition)," DIW Berlin: Politikberatung kompakt, DIW Berlin, German Institute for Economic Research, volume 93, number pbk93.
    7. Anandarajah, Gabrial & Gambhir, Ajay, 2014. "India’s CO2 emission pathways to 2050: What role can renewables play?," Applied Energy, Elsevier, vol. 131(C), pages 79-86.
    8. Kucukvar, Murat & Cansev, Bunyamin & Egilmez, Gokhan & Onat, Nuri C. & Samadi, Hamidreza, 2016. "Energy-climate-manufacturing nexus: New insights from the regional and global supply chains of manufacturing industries," Applied Energy, Elsevier, vol. 184(C), pages 889-904.
    9. Ondraczek, Janosch & Komendantova, Nadejda & Patt, Anthony, 2015. "WACC the dog: The effect of financing costs on the levelized cost of solar PV power," Renewable Energy, Elsevier, vol. 75(C), pages 888-898.
    10. Chong, W.T. & Naghavi, M.S. & Poh, S.C. & Mahlia, T.M.I. & Pan, K.C., 2011. "Techno-economic analysis of a wind–solar hybrid renewable energy system with rainwater collection feature for urban high-rise application," Applied Energy, Elsevier, vol. 88(11), pages 4067-4077.
    11. Yang, Hongxing & Wei, Zhou & Chengzhi, Lou, 2009. "Optimal design and techno-economic analysis of a hybrid solar-wind power generation system," Applied Energy, Elsevier, vol. 86(2), pages 163-169, February.
    12. Park, Tae-Young & Choung, Jae-Yong & Min, Hong-Ghi, 2008. "The Cross-industry Spillover of Technological Capability: Korea's DRAM and TFT-LCD Industries," World Development, Elsevier, vol. 36(12), pages 2855-2873, December.
    13. Isabella Alloisio & Alessandro Antimiani & Simone Borghesi & Enrica De Cian & Maria Gaeta & Chiara Martini & Ramiro Parrado & Maria Cristina Tommasino & Elena Verdolini & Maria Rosa Virdis, 2015. "Pathways to Deep Decarbonization in Italy," Working Papers 2015.80, Fondazione Eni Enrico Mattei.
    14. Mokhtar, Marwan & Ali, Muhammad Tauha & Bräuniger, Simon & Afshari, Afshin & Sgouridis, Sgouris & Armstrong, Peter & Chiesa, Matteo, 2010. "Systematic comprehensive techno-economic assessment of solar cooling technologies using location-specific climate data," Applied Energy, Elsevier, vol. 87(12), pages 3766-3778, December.
    15. Jägemann, Cosima & Fürsch, Michaela & Hagspiel, Simeon & Nagl, Stephan, 2013. "Decarbonizing Europe's power sector by 2050 — Analyzing the economic implications of alternative decarbonization pathways," Energy Economics, Elsevier, vol. 40(C), pages 622-636.
    16. Nian, Victor, 2016. "Impacts of changing design considerations on the life cycle carbon emissions of solar photovoltaic systems," Applied Energy, Elsevier, vol. 183(C), pages 1471-1487.
    17. Herrando, María & Markides, Christos N., 2016. "Hybrid PV and solar-thermal systems for domestic heat and power provision in the UK: Techno-economic considerations," Applied Energy, Elsevier, vol. 161(C), pages 512-532.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. López-Escalante, M.C. & Fernández-Rodríguez, M. & Caballero, L.J. & Martín, F. & Gabás, M. & Ramos-Barrado, J.R., 2018. "Novel encapsulant architecture on the road to photovoltaic module power output increase," Applied Energy, Elsevier, vol. 228(C), pages 1901-1910.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:212:y:2018:i:c:p:704-719. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.