IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v154y2022ics1364032121010844.html
   My bibliography  Save this article

Marginalization index as social measure for Acetone-Butanol-Ethanol supply chain planning

Author

Listed:
  • Santibañez-Aguilar, José Ezequiel
  • Quiroz-Ramírez, Juan José
  • Sánchez-Ramírez, Eduardo
  • Segovia-Hernández, Juan Gabriel
  • Flores-Tlacuahuac, Antonio
  • Ponce-Ortega, José María

Abstract

Most of methodologies for evaluating supply chain have been focused on environmental and economic criteria. Even though, social impact has been addressed in some methodologies, these methodologies have not considered the location where social impact takes place, which is a crucial issue when the social impact is measured. Therefore, the research purpose is to consider the social impact as a function of the supply chain facilities location. This is accomplished through a multi-objective approach for planning of a biomass supply chain considering simultaneously several objective functions: a) the social impact in function the location where it occurs, b) net profit and c) net CO2 emissions. Specifically, proposed mathematical model considers a social objective function based on the marginalization index. Multi-objective approach was addressed via generating several Pareto curves to illustrate the tradeoff between the considered objectives. Maximum reached profit was around $US 13,572 Million per year that can be obtained with two different pairwise analysis. Nevertheless, if the social benefit is maximized, the profit decrease until $US 6000 Million per year. Therefore, results indicate that supply chain entity's location has a crucial effect in the social impact. Additionally, a direct correlation between social functions other objectives was not observed. This approach addressed the lack of studies for the supply chain planning involving social impact functions, which should be multi-factorial. The proposed approach is applied to an important industrial process, the Acetone-Butanol-Ethanol (ABE) process, to contribute to the bioenergy sector developing.

Suggested Citation

  • Santibañez-Aguilar, José Ezequiel & Quiroz-Ramírez, Juan José & Sánchez-Ramírez, Eduardo & Segovia-Hernández, Juan Gabriel & Flores-Tlacuahuac, Antonio & Ponce-Ortega, José María, 2022. "Marginalization index as social measure for Acetone-Butanol-Ethanol supply chain planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
  • Handle: RePEc:eee:rensus:v:154:y:2022:i:c:s1364032121010844
    DOI: 10.1016/j.rser.2021.111816
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121010844
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111816?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Munguía-López, Aurora del Carmen & González-Bravo, Ramón & Ponce-Ortega, José María, 2019. "Evaluation of carbon and water policies in the optimization of water distribution networks involving power-desalination plants," Applied Energy, Elsevier, vol. 236(C), pages 927-936.
    2. Gital Durmaz, Yeşim & Bilgen, Bilge, 2020. "Multi-objective optimization of sustainable biomass supply chain network design," Applied Energy, Elsevier, vol. 272(C).
    3. Ge, Yuntian & Li, Lin & Yun, Lingxiang, 2021. "Modeling and economic optimization of cellulosic biofuel supply chain considering multiple conversion pathways," Applied Energy, Elsevier, vol. 281(C).
    4. Akhtari, Shaghaygh & Sowlati, Taraneh, 2020. "Hybrid optimization-simulation for integrated planning of bioenergy and biofuel supply chains," Applied Energy, Elsevier, vol. 259(C).
    5. Malladi, Krishna Teja & Sowlati, Taraneh, 2020. "Bi-objective optimization of biomass supply chains considering carbon pricing policies," Applied Energy, Elsevier, vol. 264(C).
    6. Rahemi, Hasti & Torabi, S. Ali & Avami, Akram & Jolai, Fariborz, 2020. "Bioethanol supply chain network design considering land characteristics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    7. Gilani, H. & Sahebi, H. & Oliveira, Fabricio, 2020. "Sustainable sugarcane-to-bioethanol supply chain network design: A robust possibilistic programming model," Applied Energy, Elsevier, vol. 278(C).
    8. Xuezhen Guo & Juliën Voogt & Bert Annevelink & Joost Snels & Argyris Kanellopoulos, 2020. "Optimizing Resource Utilization in Biomass Supply Chains by Creating Integrated Biomass Logistics Centers," Energies, MDPI, vol. 13(22), pages 1-16, November.
    9. Castellanos, Sergio & Santibañez-Aguilar, José E. & Shapiro, Benjamin B. & Powell, Douglas M. & Peters, Ian M. & Buonassisi, Tonio & Kammen, Daniel M. & Flores-Tlacuahuac, Antonio, 2018. "Sustainable silicon photovoltaics manufacturing in a global market: A techno-economic, tariff and transportation framework," Applied Energy, Elsevier, vol. 212(C), pages 704-719.
    10. Kheiri, Farshad, 2018. "A review on optimization methods applied in energy-efficient building geometry and envelope design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 92(C), pages 897-920.
    11. Mohd Yahya, Nur Syahira & Ng, Lik Yin & Andiappan, Viknesh, 2021. "Optimisation and planning of biomass supply chain for new and existing power plants based on carbon reduction targets," Energy, Elsevier, vol. 237(C).
    12. Martínez-Guido, Sergio Iván & Ríos-Badrán, Inés María & Gutiérrez-Antonio, Claudia & Ponce-Ortega, José María, 2019. "Strategic planning for the use of waste biomass pellets in Mexican power plants," Renewable Energy, Elsevier, vol. 130(C), pages 622-632.
    13. Iodice, Paolo & Senatore, Adolfo & Langella, Giuseppe & Amoresano, Amedeo, 2016. "Effect of ethanol–gasoline blends on CO and HC emissions in last generation SI engines within the cold-start transient: An experimental investigation," Applied Energy, Elsevier, vol. 179(C), pages 182-190.
    14. Mukhopadhyay, Bineeta & Das, Debapriya, 2020. "Multi-objective dynamic and static reconfiguration with optimized allocation of PV-DG and battery energy storage system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 124(C).
    15. Mohammad Fattahi & Kannan Govindan & Mehdi Farhadkhani, 2021. "Sustainable supply chain planning for biomass-based power generation with environmental risk and supply uncertainty considerations: a real-life case study," International Journal of Production Research, Taylor & Francis Journals, vol. 59(10), pages 3084-3108, May.
    16. Juan E. Tibaquirá & José I. Huertas & Sebastián Ospina & Luis F. Quirama & José E. Niño, 2018. "The Effect of Using Ethanol-Gasoline Blends on the Mechanical, Energy and Environmental Performance of In-Use Vehicles," Energies, MDPI, vol. 11(1), pages 1-17, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam Hassanin & Matjaz Knez, 2022. "Managing Supply Chain Activities in the Field of Energy Production Focusing on Renewables," Sustainability, MDPI, vol. 14(12), pages 1-33, June.
    2. Edgar Gutierrez-Franco & Andres Polo & Nicolas Clavijo-Buritica & Luis Rabelo, 2021. "Multi-Objective Optimization to Support the Design of a Sustainable Supply Chain for the Generation of Biofuels from Forest Waste," Sustainability, MDPI, vol. 13(14), pages 1-27, July.
    3. Vitale, Ignacio & Dondo, Rodolfo G. & González, Matías & Cóccola, Mariana E., 2022. "Modelling and optimization of material flows in the wood pellet supply chain," Applied Energy, Elsevier, vol. 313(C).
    4. Li, Zhengbing & Liang, Yongtu & Ni, Weilong & Liao, Qi & Xu, Ning & Li, Lichao & Zheng, Jianqin & Zhang, Haoran, 2022. "Pipesharing: economic-environmental benefits from transporting biofuels through multiproduct pipelines," Applied Energy, Elsevier, vol. 311(C).
    5. Ahmed A. Fattah & Tarek M. Aboul-Fotouh & Khaled A. Fattah & Aya H. Mohammed, 2022. "Utilization of Selected Nanoparticles (Ag 2 O and MnO 2 ) for the Production of High-Quality and Environmental-Friendly Gasoline," Sustainability, MDPI, vol. 14(19), pages 1-12, September.
    6. Suzan Abdelhady & Mohamed A. Shalaby & Ahmed Shaban, 2021. "Techno-Economic Analysis for the Optimal Design of a National Network of Agro-Energy Biomass Power Plants in Egypt," Energies, MDPI, vol. 14(11), pages 1-26, May.
    7. Jahani, Hamed & Abbasi, Babak & Sheu, Jiuh-Biing & Klibi, Walid, 2024. "Supply chain network design with financial considerations: A comprehensive review," European Journal of Operational Research, Elsevier, vol. 312(3), pages 799-839.
    8. Mondal, Arijit & Giri, Binoy Krishna & Roy, Sankar Kumar, 2023. "An integrated sustainable bio-fuel and bio-energy supply chain: A novel approach based on DEMATEL and fuzzy-random robust flexible programming with Me measure," Applied Energy, Elsevier, vol. 343(C).
    9. Senocak, Ahmet Alp & Guner Goren, Hacer, 2023. "Three-phase artificial intelligence-geographic information systems-based biomass network design approach: A case study in Denizli," Applied Energy, Elsevier, vol. 343(C).
    10. Cabrera-Jiménez, Richard & Mateo-Sanz, Josep M. & Gavaldà, Jordi & Jiménez, Laureano & Pozo, Carlos, 2022. "Comparing biofuels through the lens of sustainability: A data envelopment analysis approach," Applied Energy, Elsevier, vol. 307(C).
    11. Shahbazbegian, Vahid & Hosseini-Motlagh, Seyyed-Mahdi & Haeri, Abdorrahman, 2020. "Integrated forward/reverse logistics thin-film photovoltaic power plant supply chain network design with uncertain data," Applied Energy, Elsevier, vol. 277(C).
    12. Fernández-Puratich, Harald & Rebolledo-Leiva, Ricardo & Hernández, Diógenes & Gómez-Lagos, Javier E. & Armengot-Carbo, Bruno & Oliver-Villanueva, José Vicente, 2021. "Bi-objective optimization of multiple agro-industrial wastes supply to a cogeneration system promoting local circular bioeconomy," Applied Energy, Elsevier, vol. 300(C).
    13. Mustaffa, Nur Kamaliah & Kudus, Sakhiah Abdul, 2022. "Challenges and way forward towards best practices of energy efficient building in Malaysia," Energy, Elsevier, vol. 259(C).
    14. Benedek Kiss & Jose Dinis Silvestre & Rita Andrade Santos & Zsuzsa Szalay, 2021. "Environmental and Economic Optimisation of Buildings in Portugal and Hungary," Sustainability, MDPI, vol. 13(24), pages 1-19, December.
    15. Yin Hui Lai & Irene Mei Leng Chew, 2022. "Wastewater System Integration: A Biogenic Waste Biorefinery Eco-Industrial Park," Sustainability, MDPI, vol. 14(24), pages 1-12, December.
    16. Md Jahidur Rahman & Tahar Tafticht & Mamadou Lamine Doumbia & Iqbal Messaïf, 2023. "Optimal Inverter Control Strategies for a PV Power Generation with Battery Storage System in Microgrid," Energies, MDPI, vol. 16(10), pages 1-36, May.
    17. Salehi-Amiri, Amirhossein & Zahedi, Ali & Akbapour, Navid & Hajiaghaei-Keshteli, Mostafa, 2021. "Designing a sustainable closed-loop supply chain network for walnut industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    18. Zhikun Ding & Rongsheng Liu & Zongjie Li & Cheng Fan, 2020. "A Thematic Network-Based Methodology for the Research Trend Identification in Building Energy Management," Energies, MDPI, vol. 13(18), pages 1-33, September.
    19. Jamalnia, Aboozar & Gong, Yu & Govindan, Kannan, 2023. "Sub-supplier's sustainability management in multi-tier supply chains: A systematic literature review on the contingency variables, and a conceptual framework," International Journal of Production Economics, Elsevier, vol. 255(C).
    20. Fernandes, Marco S. & Rodrigues, Eugénio & Gaspar, Adélio Rodrigues & Costa, José J. & Gomes, Álvaro, 2019. "The impact of thermal transmittance variation on building design in the Mediterranean region," Applied Energy, Elsevier, vol. 239(C), pages 581-597.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:154:y:2022:i:c:s1364032121010844. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.