IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v311y2022ics0306261922001490.html
   My bibliography  Save this article

Pipesharing: economic-environmental benefits from transporting biofuels through multiproduct pipelines

Author

Listed:
  • Li, Zhengbing
  • Liang, Yongtu
  • Ni, Weilong
  • Liao, Qi
  • Xu, Ning
  • Li, Lichao
  • Zheng, Jianqin
  • Zhang, Haoran

Abstract

As the most potential renewable energy, biofuel energy has become the fourth largest energy source after coal, oil and natural gas. Promoting the extensive application of biofuels is an effective way to reduce carbon emissions. Pipeline is one of the most efficient ways to transport large-volume fuels over long distances. Transporting biofuels through the existing multiproduct pipelines is in line with the requirements of environmental protection, energy saving and low-carbon economy. To determine the surplus capacity of pipelines in a certain period is the premise of adopting this mode to transfer biofuels. This study develops a method for estimating the capacity of pipelines for biofuel transport, accounting for clients’ demand for petroleum products, the capacity limitations of existing pipeline equipment and transport cycle of biofuels in the pipeline. Using the data from practical pipelines, their monthly surplus capacity is within the range of 15 × 104 to 80 × 104 m3. It is turned out that pipeline length, transportation capacity of power equipment and market demand of refined products are the dominating factors for surplus capacity. Assuming varying demand on refined products, sensitivity analysis is conducted to compare the economic-environmental benefits from sharing pipeline’s surplus capacity with biofuel shipment. The simulation results show that pipeline sharing brings about win–win effects for both petroleum and pipeline companies. The petroleum company has a reduction of 1.2%–34.9% in carbon emissions and 0.3%–14.7% in logistics cost, while the pipeline operator increases revenue by 0.4%–33.7%.

Suggested Citation

  • Li, Zhengbing & Liang, Yongtu & Ni, Weilong & Liao, Qi & Xu, Ning & Li, Lichao & Zheng, Jianqin & Zhang, Haoran, 2022. "Pipesharing: economic-environmental benefits from transporting biofuels through multiproduct pipelines," Applied Energy, Elsevier, vol. 311(C).
  • Handle: RePEc:eee:appene:v:311:y:2022:i:c:s0306261922001490
    DOI: 10.1016/j.apenergy.2022.118684
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922001490
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.118684?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Awudu, Iddrisu & Zhang, Jun, 2012. "Uncertainties and sustainability concepts in biofuel supply chain management: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1359-1368.
    2. Ge, Yuntian & Li, Lin & Yun, Lingxiang, 2021. "Modeling and economic optimization of cellulosic biofuel supply chain considering multiple conversion pathways," Applied Energy, Elsevier, vol. 281(C).
    3. Moretti, Luca & Milani, Mario & Lozza, Giovanni Gustavo & Manzolini, Giampaolo, 2021. "A detailed MILP formulation for the optimal design of advanced biofuel supply chains," Renewable Energy, Elsevier, vol. 171(C), pages 159-175.
    4. Meira, William Hitoshi Tsunoda & Magatão, Leandro & Relvas, Susana & Barbosa-Póvoa, Ana Paula & Neves, Flávio & Arruda, Lúcia V.R., 2018. "A matheuristic decomposition approach for the scheduling of a single-source and multiple destinations pipeline system," European Journal of Operational Research, Elsevier, vol. 268(2), pages 665-687.
    5. Asadi, Ehsan & Habibi, Farhad & Nickel, Stefan & Sahebi, Hadi, 2018. "A bi-objective stochastic location-inventory-routing model for microalgae-based biofuel supply chain," Applied Energy, Elsevier, vol. 228(C), pages 2235-2261.
    6. Akhtari, Shaghaygh & Sowlati, Taraneh, 2020. "Hybrid optimization-simulation for integrated planning of bioenergy and biofuel supply chains," Applied Energy, Elsevier, vol. 259(C).
    7. Akhtari, Shaghaygh & Sowlati, Taraneh & Griess, Verena C., 2018. "Integrated strategic and tactical optimization of forest-based biomass supply chains to consider medium-term supply and demand variations," Applied Energy, Elsevier, vol. 213(C), pages 626-638.
    8. Liu, Zhexuan & Qiu, Tong & Chen, Bingzhen, 2014. "A study of the LCA based biofuel supply chain multi-objective optimization model with multi-conversion paths in China," Applied Energy, Elsevier, vol. 126(C), pages 221-234.
    9. Mostafaei, Hossein & Castro, Pedro M. & Relvas, Susana & Harjunkoski, Iiro, 2021. "A holistic MILP model for scheduling and inventory management of a multiproduct oil distribution system," Omega, Elsevier, vol. 98(C).
    10. Fattahi, Mohammad & Govindan, Kannan, 2018. "A multi-stage stochastic program for the sustainable design of biofuel supply chain networks under biomass supply uncertainty and disruption risk: A real-life case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 118(C), pages 534-567.
    11. Wang, Wenya & Fan, L.W. & Zhou, P., 2022. "Evolution of global fossil fuel trade dependencies," Energy, Elsevier, vol. 238(PC).
    12. Zhang, Jun & Osmani, Atif & Awudu, Iddrisu & Gonela, Vinay, 2013. "An integrated optimization model for switchgrass-based bioethanol supply chain," Applied Energy, Elsevier, vol. 102(C), pages 1205-1217.
    13. Chiaramonti, David & Talluri, Giacomo & Scarlat, Nicolae & Prussi, Matteo, 2021. "The challenge of forecasting the role of biofuel in EU transport decarbonisation at 2050: A meta-analysis review of published scenarios," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    14. Ren, Jingzheng & An, Da & Liang, Hanwei & Dong, Liang & Gao, Zhiqiu & Geng, Yong & Zhu, Qinghua & Song, Shaoxian & Zhao, Wenhui, 2016. "Life cycle energy and CO2 emission optimization for biofuel supply chain planning under uncertainties," Energy, Elsevier, vol. 103(C), pages 151-166.
    15. Yuan, Meng & Zhang, Haoran & Wang, Bohong & Zhang, Yang & Zhou, Xingyuan & Liang, Yongtu, 2020. "Future scenario of China's downstream oil reform: Improving the energy-environmental efficiency of the pipeline networks through interconnectivity," Energy Policy, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xuwei Tang & Qi Zhang & Chunxin Li & Haitao Zhang & Haiyun Xu, 2023. "The Effects and Driving Factors of Low-Carbon Transition of International Oil Companies: Evidence from a Super-SBM Model," Energies, MDPI, vol. 17(1), pages 1-19, December.
    2. Tu, Renfu & Jiao, Yingqi & Qiu, Rui & Liao, Qi & Xu, Ning & Du, Jian & Liang, Yongtu, 2023. "Energy saving and consumption reduction in the transportation of petroleum products: A pipeline pricing optimization perspective," Applied Energy, Elsevier, vol. 342(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Changqiang & Hu, Hao & Wang, Shaowen & Rodriguez, Luis F. & Ting, K.C. & Lin, Tao, 2022. "Multiperiod stochastic programming for biomass supply chain design under spatiotemporal variability of feedstock supply," Renewable Energy, Elsevier, vol. 186(C), pages 378-393.
    2. Henrique Piqueiro & Reinaldo Gomes & Romão Santos & Jorge Pinho de Sousa, 2023. "Managing Disruptions in a Biomass Supply Chain: A Decision Support System Based on Simulation/Optimisation," Sustainability, MDPI, vol. 15(9), pages 1-25, May.
    3. Farajiamiri, Mina & Meyer, Jörn-Christian & Walther, Grit, 2023. "Multi-objective optimization of renewable fuel supply chains regarding cost, land use, and water use," Applied Energy, Elsevier, vol. 349(C).
    4. Edgar Gutierrez-Franco & Andres Polo & Nicolas Clavijo-Buritica & Luis Rabelo, 2021. "Multi-Objective Optimization to Support the Design of a Sustainable Supply Chain for the Generation of Biofuels from Forest Waste," Sustainability, MDPI, vol. 13(14), pages 1-27, July.
    5. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    6. Haji Esmaeili, Seyed Ali & Szmerekovsky, Joseph & Sobhani, Ahmad & Dybing, Alan & Peterson, Tim O., 2020. "Sustainable biomass supply chain network design with biomass switching incentives for first-generation bioethanol producers," Energy Policy, Elsevier, vol. 138(C).
    7. Razm, Sobhan & Brahimi, Nadjib & Hammami, Ramzi & Dolgui, Alexandre, 2023. "A production planning model for biorefineries with biomass perishability and biofuel transformation," International Journal of Production Economics, Elsevier, vol. 258(C).
    8. Rendon-Sagardi, Miguel A. & Sanchez-Ramirez, Cuauhtemoc & Cortes-Robles, Guillermo & Alor-Hernandez, Giner & Cedillo-Campos, Miguel G., 2014. "Dynamic analysis of feasibility in ethanol supply chain for biofuel production in Mexico," Applied Energy, Elsevier, vol. 123(C), pages 358-367.
    9. Azadeh, Ali & Vafa Arani, Hamed, 2016. "Biodiesel supply chain optimization via a hybrid system dynamics-mathematical programming approach," Renewable Energy, Elsevier, vol. 93(C), pages 383-403.
    10. Mosayeb Dashtpeyma & Reza Ghodsi, 2021. "Forest Biomass and Bioenergy Supply Chain Resilience: A Systematic Literature Review on the Barriers and Enablers," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    11. Gilani, H. & Sahebi, H. & Oliveira, Fabricio, 2020. "Sustainable sugarcane-to-bioethanol supply chain network design: A robust possibilistic programming model," Applied Energy, Elsevier, vol. 278(C).
    12. Wang, Guotao & Liao, Qi & Wang, Chang & Liang, Yongtu & Zhang, Haoran, 2022. "Multiperiod optimal planning of biofuel refueling stations: A bi-level game-theoretic approach," Renewable Energy, Elsevier, vol. 200(C), pages 1152-1165.
    13. Ghadge, Abhijeet & van der Werf, Sjoerd & Er Kara, Merve & Goswami, Mohit & Kumar, Pankaj & Bourlakis, Michael, 2020. "Modelling the impact of climate change risk on bioethanol supply chains," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    14. Babazadeh, Reza & Razmi, Jafar & Pishvaee, Mir Saman & Rabbani, Masoud, 2017. "A sustainable second-generation biodiesel supply chain network design problem under risk," Omega, Elsevier, vol. 66(PB), pages 258-277.
    15. Seyed Ali Haji Esmaeili & Ahmad Sobhani & Sajad Ebrahimi & Joseph Szmerekovsky & Alan Dybing & Amin Keramati, 2023. "Location Allocation of Biorefineries for a Switchgrass-Based Bioethanol Supply Chain Using Energy Consumption and Emissions," Logistics, MDPI, vol. 7(1), pages 1-22, January.
    16. Santibañez-Aguilar, José Ezequiel & Quiroz-Ramírez, Juan José & Sánchez-Ramírez, Eduardo & Segovia-Hernández, Juan Gabriel & Flores-Tlacuahuac, Antonio & Ponce-Ortega, José María, 2022. "Marginalization index as social measure for Acetone-Butanol-Ethanol supply chain planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    17. Rajabzadeh, Hamed & Babazadeh, Reza, 2022. "A game-theoretic approach for power pricing in a resilient supply chain considering a dual channel biorefining structure and the hybrid power plant," Renewable Energy, Elsevier, vol. 198(C), pages 1082-1094.
    18. Hoo Poh Ying & Cassendra Bong Phun Chien & Fan Yee Van, 2020. "Operational Management Implemented in Biofuel Upstream Supply Chain and Downstream International Trading: Current Issues in Southeast Asia," Energies, MDPI, vol. 13(7), pages 1-26, April.
    19. Hugo Guzmán-Bello & Iosvani López-Díaz & Miguel Aybar-Mejía & Jose Atilio de Frias, 2022. "A Review of Trends in the Energy Use of Biomass: The Case of the Dominican Republic," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    20. Akhtari, Shaghaygh & Sowlati, Taraneh, 2020. "Hybrid optimization-simulation for integrated planning of bioenergy and biofuel supply chains," Applied Energy, Elsevier, vol. 259(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:311:y:2022:i:c:s0306261922001490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.