IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v210y2018icp409-419.html
   My bibliography  Save this article

Role of financial mechanisms for accelerating the rate of water and energy efficiency retrofits in Australian public buildings: Hybrid Bayesian Network and System Dynamics modelling approach

Author

Listed:
  • Bertone, Edoardo
  • Sahin, Oz
  • Stewart, Rodney A.
  • Zou, Patrick X.W.
  • Alam, Morshed
  • Hampson, Keith
  • Blair, Evan

Abstract

In Australia, the government spending on public buildings’ energy and water consumption is considerable; however the building energy and water retrofit market potential has been diminished by a number of barriers, especially financial. In contrast, in other advanced economies there are several reported financing strategies that have been shown to accelerate retrofit projects implementation. In this study, a coupled Bayesian Network – System Dynamics model was developed with the core aim to assess the likely influence of those novel financing options and procurement procedures on public building retrofit outcomes scenarios in the Australian context. A particular case-study focusing on Australian public hospitals was showcased as an example in this paper. Stakeholder engagement was utilised to estimate likely preferences and to conceptualise causal relationships of model parameters. The scenario modelling showed that a revolving loan fund supporting an energy performance contracting procurement procedure was preferred. Subsequently, the specific features of this preferred framework were optimised to yield the greatest number of viable retrofit projects over the long term. The results indicated that such a financing scheme would lead to substantial abatement of energy and water consumption, as well as carbon emissions. The strategic scenario analysis approach developed herein provides evidence-based support to policy-makers advocating novel financing and procurement models for addressing a government’s sustainability agenda in a financially responsible and net-positive manner.

Suggested Citation

  • Bertone, Edoardo & Sahin, Oz & Stewart, Rodney A. & Zou, Patrick X.W. & Alam, Morshed & Hampson, Keith & Blair, Evan, 2018. "Role of financial mechanisms for accelerating the rate of water and energy efficiency retrofits in Australian public buildings: Hybrid Bayesian Network and System Dynamics modelling approach," Applied Energy, Elsevier, vol. 210(C), pages 409-419.
  • Handle: RePEc:eee:appene:v:210:y:2018:i:c:p:409-419
    DOI: 10.1016/j.apenergy.2017.08.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917310668
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.08.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ardente, Fulvio & Beccali, Marco & Cellura, Maurizio & Mistretta, Marina, 2011. "Energy and environmental benefits in public buildings as a result of retrofit actions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 460-470, January.
    2. Walter, Travis & Sohn, Michael D., 2016. "A regression-based approach to estimating retrofit savings using the Building Performance Database," Applied Energy, Elsevier, vol. 179(C), pages 996-1005.
    3. Diakaki, Christina & Grigoroudis, Evangelos & Kabelis, Nikos & Kolokotsa, Dionyssia & Kalaitzakis, Kostas & Stavrakakis, George, 2010. "A multi-objective decision model for the improvement of energy efficiency in buildings," Energy, Elsevier, vol. 35(12), pages 5483-5496.
    4. Rieger, Alexander & Thummert, Robert & Fridgen, Gilbert & Kahlen, Micha & Ketter, Wolfgang, 2016. "Estimating the benefits of cooperation in a residential microgrid: A data-driven approach," Applied Energy, Elsevier, vol. 180(C), pages 130-141.
    5. Uusitalo, Laura, 2007. "Advantages and challenges of Bayesian networks in environmental modelling," Ecological Modelling, Elsevier, vol. 203(3), pages 312-318.
    6. Nicholls, A. & Sharma, R. & Saha, T.K., 2015. "Financial and environmental analysis of rooftop photovoltaic installations with battery storage in Australia," Applied Energy, Elsevier, vol. 159(C), pages 252-264.
    7. Cai, Baoping & Liu, Yonghong & Fan, Qian & Zhang, Yunwei & Liu, Zengkai & Yu, Shilin & Ji, Renjie, 2014. "Multi-source information fusion based fault diagnosis of ground-source heat pump using Bayesian network," Applied Energy, Elsevier, vol. 114(C), pages 1-9.
    8. Saari, Arto & Kalamees, Targo & Jokisalo, Juha & Michelsson, Rasmus & Alanne, Kari & Kurnitski, Jarek, 2012. "Financial viability of energy-efficiency measures in a new detached house design in Finland," Applied Energy, Elsevier, vol. 92(C), pages 76-83.
    9. Fang, Tingting & Lahdelma, Risto, 2016. "Evaluation of a multiple linear regression model and SARIMA model in forecasting heat demand for district heating system," Applied Energy, Elsevier, vol. 179(C), pages 544-552.
    10. Zafirakis, Dimitrios & Chalvatzis, Konstantinos J. & Baiocchi, Giovanni & Daskalakis, George, 2013. "Modeling of financial incentives for investments in energy storage systems that promote the large-scale integration of wind energy," Applied Energy, Elsevier, vol. 105(C), pages 138-154.
    11. Thulo Ram Gurung & Rodney A. Stewart & Cara D. Beal & Ashok K. Sharma, 2016. "Investigating the Financial Implications and Viability of Diversified Water Supply Systems in an Urban Water Supply Zone," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(11), pages 4037-4051, September.
    12. Yang, Tianren & Zhang, Xiaoling, 2016. "Benchmarking the building energy consumption and solar energy trade-offs of residential neighborhoods on Chongming Eco-Island, China," Applied Energy, Elsevier, vol. 180(C), pages 792-799.
    13. John M Bryson, 2004. "What to do when Stakeholders matter," Public Management Review, Taylor & Francis Journals, vol. 6(1), pages 21-53, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikolaos Papadakis & Dimitrios Al. Katsaprakakis, 2023. "A Review of Energy Efficiency Interventions in Public Buildings," Energies, MDPI, vol. 16(17), pages 1-34, August.
    2. He, Wenhua & Liu, Pei & Lin, Borong & Zhou, Hao & Chen, Xuesheng, 2022. "Green finance support for development of green buildings in China: Effect, mechanism, and policy implications," Energy Policy, Elsevier, vol. 165(C).
    3. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Optimisation modelling tools and solving techniques for integrated precinct-scale energy–water system planning," Applied Energy, Elsevier, vol. 318(C).
    4. Maria Psillaki & Nikolaos Apostolopoulos & Ilias Makris & Panagiotis Liargovas & Sotiris Apostolopoulos & Panos Dimitrakopoulos & George Sklias, 2023. "Hospitals’ Energy Efficiency in the Perspective of Saving Resources and Providing Quality Services through Technological Options: A Systematic Literature Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
    5. Qiao, Yidan & Zhang, Xian & Wang, Hanyu & Chen, Dengkai, 2024. "Dynamic assessment method for human factor risk of manned deep submergence operation system based on SPAR-H and SD," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Fan, Jing-Li & Kong, Ling-Si & Wang, Hang & Zhang, Xian, 2019. "A water-energy nexus review from the perspective of urban metabolism," Ecological Modelling, Elsevier, vol. 392(C), pages 128-136.
    7. Ma, Minda & Ma, Xin & Cai, Wei & Cai, Weiguang, 2020. "Low carbon roadmap of residential building sector in China: Historical mitigation and prospective peak," Applied Energy, Elsevier, vol. 273(C).
    8. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Challenges, opportunities, and strategies for undertaking integrated precinct-scale energy–water system planning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    9. Rita Remeikienė & Ligita Gasparėnienė & Aleksandra Fedajev & Marek Szarucki & Marija Đekić & Jolita Razumienė, 2021. "Evaluation of Sustainable Energy Development Progress in EU Member States in the Context of Building Renovation," Energies, MDPI, vol. 14(14), pages 1-22, July.
    10. Paolo Bertoldi & Marina Economidou & Valentina Palermo & Benigna Boza‐Kiss & Valeria Todeschi, 2021. "How to finance energy renovation of residential buildings: Review of current and emerging financing instruments in the EU," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(1), January.
    11. Minyoung Kwon & Erwin Mlecnik & Vincent Gruis, 2021. "Business Model Development for Temporary Home Renovation Consultancy Centres: Experiences from European Pop-Ups," Sustainability, MDPI, vol. 13(15), pages 1-18, July.
    12. Tang, Xinmeng & Zhou, Xiaoguang, 2023. "Impact of green finance on renewable energy development: A spatiotemporal consistency perspective," Renewable Energy, Elsevier, vol. 204(C), pages 320-337.
    13. Chen, Xi & Liu, Binyi & Ma, Yali & Lv, Shuhui, 2023. "Building back greener: Promoting performance in natural resource markets for sustainable development," Resources Policy, Elsevier, vol. 86(PB).
    14. Kiki Ayu & Akilu Yunusa-Kaltungo, 2020. "A Holistic Framework for Supporting Maintenance and Asset Management Life Cycle Decisions for Power Systems," Energies, MDPI, vol. 13(8), pages 1-32, April.
    15. Xin Liang & Geoffrey Qiping Shen & Li Guo, 2019. "Optimizing Incentive Policy of Energy-Efficiency Retrofit in Public Buildings: A Principal-Agent Model," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    16. Theo Lynn & Pierangelo Rosati & Antonia Egli & Stelios Krinidis & Komninos Angelakoglou & Vasileios Sougkakis & Dimitrios Tzovaras & Mohamad Kassem & David Greenwood & Omar Doukari, 2021. "RINNO: Towards an Open Renovation Platform for Integrated Design and Delivery of Deep Renovation Projects," Sustainability, MDPI, vol. 13(11), pages 1-21, May.
    17. Xu, Tong & Zhang, Yajing & Shi, Longyu & Feng, Yunshuang & Ke, Xinjue & Zhang, Chengliang, 2023. "A comprehensive evaluation framework of energy and resources consumption of public buildings: Case study, People's Bank of China," Applied Energy, Elsevier, vol. 351(C).
    18. Lucas Niehuns Antunes & Enedir Ghisi, 2020. "Water and energy consumption in schools: case studies in Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(5), pages 4225-4249, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karmellos, M. & Kiprakis, A. & Mavrotas, G., 2015. "A multi-objective approach for optimal prioritization of energy efficiency measures in buildings: Model, software and case studies," Applied Energy, Elsevier, vol. 139(C), pages 131-150.
    2. Walter, Travis & Sohn, Michael D., 2016. "A regression-based approach to estimating retrofit savings using the Building Performance Database," Applied Energy, Elsevier, vol. 179(C), pages 996-1005.
    3. Ahlrichs, Jakob & Rockstuhl, Sebastian & Tränkler, Timm & Wenninger, Simon, 2020. "The impact of political instruments on building energy retrofits: A risk-integrated thermal Energy Hub approach," Energy Policy, Elsevier, vol. 147(C).
    4. Sahu, Atma Ram & Palei, Sanjay Kumar, 2022. "Fault analysis of dragline subsystem using Bayesian network model," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    5. Economou, Agisilaos, 2012. "The use of natural gas and geothermal energy in school units. Greece: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1317-1322.
    6. Jing, Gang & Cai, Wenjian & Zhang, Xin & Cui, Can & Yin, Xiaohong & Xian, Huacai, 2019. "An energy-saving oriented air balancing strategy for multi-zone demand-controlled ventilation system," Energy, Elsevier, vol. 172(C), pages 1053-1065.
    7. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    8. Martin Luštický & Martin Musil, 2016. "Stakeholder-Based Evaluation of Tourism Policy Priorities: The Case of the South Bohemian Region," Acta Oeconomica Pragensia, Prague University of Economics and Business, vol. 2016(3), pages 3-23.
    9. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    10. Di Zhang & Xinping Yan & Zaili Yang & Jin Wang, 2014. "An accident data–based approach for congestion risk assessment of inland waterways: A Yangtze River case," Journal of Risk and Reliability, , vol. 228(2), pages 176-188, April.
    11. Leccese, Francesco & Salvadori, Giacomo & Rocca, Michele, 2017. "Critical analysis of the energy performance indicators for road lighting systems in historical towns of central Italy," Energy, Elsevier, vol. 138(C), pages 616-628.
    12. Nicholson, Ann E. & Flores, M. Julia, 2011. "Combining state and transition models with dynamic Bayesian networks," Ecological Modelling, Elsevier, vol. 222(3), pages 555-566.
    13. Mark K. McBeth & Donna L. Lybecker & James W. Stoutenborough, 2016. "Do stakeholders analyze their audience? The communication switch and stakeholder personal versus public communication choices," Policy Sciences, Springer;Society of Policy Sciences, vol. 49(4), pages 421-444, December.
    14. Magnus Dahl & Adam Brun & Oliver S. Kirsebom & Gorm B. Andresen, 2018. "Improving Short-Term Heat Load Forecasts with Calendar and Holiday Data," Energies, MDPI, vol. 11(7), pages 1-16, June.
    15. Moe, S. Jannicke & Haande, Sigrid & Couture, Raoul-Marie, 2016. "Climate change, cyanobacteria blooms and ecological status of lakes: A Bayesian network approach," Ecological Modelling, Elsevier, vol. 337(C), pages 330-347.
    16. Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
    17. Pejman Bahramian, 2021. "Integration of wind power into an electricity system using pumped-storage: Economic challenges and stakeholder impacts," Working Paper 1480, Economics Department, Queen's University.
    18. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    19. De Iuliis, Melissa & Kammouh, Omar & Cimellaro, Gian Paolo & Tesfamariam, Solomon, 2021. "Quantifying restoration time of power and telecommunication lifelines after earthquakes using Bayesian belief network model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    20. Gong, Mingju & Zhao, Yin & Sun, Jiawang & Han, Cuitian & Sun, Guannan & Yan, Bo, 2022. "Load forecasting of district heating system based on Informer," Energy, Elsevier, vol. 253(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:210:y:2018:i:c:p:409-419. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.