IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i2p755-d1029633.html
   My bibliography  Save this article

Hospitals’ Energy Efficiency in the Perspective of Saving Resources and Providing Quality Services through Technological Options: A Systematic Literature Review

Author

Listed:
  • Maria Psillaki

    (Department of Economics, University of Piraeus, 18534 Piraeus, Greece)

  • Nikolaos Apostolopoulos

    (Department of Management Science and Technology, University of the Peloponnese, 22100 Tripoli, Greece)

  • Ilias Makris

    (Department of Accounting and Finance, University of the Peloponnese, 24100 Kalamata, Greece)

  • Panagiotis Liargovas

    (Department of Management Science and Technology, University of the Peloponnese, 22100 Tripoli, Greece)

  • Sotiris Apostolopoulos

    (Department of Economics and Business, Neapolis University Pafos, Pafos 8042, Cyprus)

  • Panos Dimitrakopoulos

    (Department of Accounting and Finance, University of the Peloponnese, 24100 Kalamata, Greece)

  • George Sklias

    (Department of Economics and Business, Neapolis University Pafos, Pafos 8042, Cyprus)

Abstract

The effects of climate change, in combination with the recent energy crisis, have brought the energy efficiency issues of hospitals markedly to the fore. Hospitals are considered among the most energy-intensive buildings, which is why they have become a top priority for governments wishing to upgrade their energy efficiency. Given the critical nature of the work of hospitals and the model of healthcare provision (nursing cover 24 h per day, 7 days a week) it is very hard to achieve energy cuts. The international literature shows that the energy efficiency of hospitals is a complex process that requires further research. This need is covered by the present systematic literature review, which captures the existing knowledge on energy monitoring strategies, assessment, and upgrading through technology, resources-saving strategies, and the relationship between energy efficiency and the quality of the service provision, while also identifying future research considerations and the potential for supporting researchers’ work. Additionally, this study adds aggregated data to the literature, as far as the energy performance of buildings is concerned, and allows investors to have data exported from energy surveys at their disposal. At the same time, it suggests the further exploration of alternative energy technologies, based on all renewable energy sources rather than only solar power systems. This highlights the need for a comparative examination of hospitals with different climatic and socio-economic environments, to better determine what technologies effectively serve the energy needs of each region. Finally, this survey considers it necessary to connect the energy efficiency of hospital units with the awareness of the management and workforce in the saving of energy resources. Due to the fact that most studies are oriented toward the energy performance of very large-sized hospitals, it is suggested that in the future, the research lens should also be focused on the smaller private and public sectors’ health units.

Suggested Citation

  • Maria Psillaki & Nikolaos Apostolopoulos & Ilias Makris & Panagiotis Liargovas & Sotiris Apostolopoulos & Panos Dimitrakopoulos & George Sklias, 2023. "Hospitals’ Energy Efficiency in the Perspective of Saving Resources and Providing Quality Services through Technological Options: A Systematic Literature Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:755-:d:1029633
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/2/755/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/2/755/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carnero, María Carmen & Gómez, Andrés, 2017. "Maintenance strategy selection in electric power distribution systems," Energy, Elsevier, vol. 129(C), pages 255-272.
    2. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2016. "Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: A new approach to assess cost-optimality," Applied Energy, Elsevier, vol. 174(C), pages 37-68.
    3. Wang, Tao & Li, Xiaodong & Liao, Pin-Chao & Fang, Dongping, 2016. "Building energy efficiency for public hospitals and healthcare facilities in China: Barriers and drivers," Energy, Elsevier, vol. 103(C), pages 588-597.
    4. Francisco Javier Montiel-Santiago & Manuel Jesús Hermoso-Orzáez & Julio Terrados-Cepeda, 2020. "Sustainability and Energy Efficiency: BIM 6D. Study of the BIM Methodology Applied to Hospital Buildings. Value of Interior Lighting and Daylight in Energy Simulation," Sustainability, MDPI, vol. 12(14), pages 1-29, July.
    5. Zheng, C.Y. & Wu, J.Y. & Zhai, X.Q., 2014. "A novel operation strategy for CCHP systems based on minimum distance," Applied Energy, Elsevier, vol. 128(C), pages 325-335.
    6. Kong, Xiangfei & Lu, Shilei & Wu, Yong, 2012. "A review of building energy efficiency in China during “Eleventh Five-Year Plan” period," Energy Policy, Elsevier, vol. 41(C), pages 624-635.
    7. Chung, Mo & Park, Hwa-Choon, 2015. "Comparison of building energy demand for hotels, hospitals, and offices in Korea," Energy, Elsevier, vol. 92(P3), pages 383-393.
    8. Orosz, Matthew & Altes-Buch, Queralt & Mueller, Amy & Lemort, Vincent, 2018. "Experimental validation of an electrical and thermal energy demand model for rapid assessment of rural health centers in sub-Saharan Africa," Applied Energy, Elsevier, vol. 218(C), pages 382-390.
    9. Law, Ying Lam E. & Dworkin, Seth B., 2016. "Characterization of the effects of borehole configuration and interference with long term ground temperature modelling of ground source heat pumps," Applied Energy, Elsevier, vol. 179(C), pages 1032-1047.
    10. Małgorzata Cygańska & Magdalena Kludacz-Alessandri, 2021. "Determinants of Electrical and Thermal Energy Consumption in Hospitals According to Climate Zones in Poland," Energies, MDPI, vol. 14(22), pages 1-24, November.
    11. Zhang, Jian & Cho, Heejin & Luck, Rogelio & Mago, Pedro J., 2018. "Integrated photovoltaic and battery energy storage (PV-BES) systems: An analysis of existing financial incentive policies in the US," Applied Energy, Elsevier, vol. 212(C), pages 895-908.
    12. Abu Bakar, Nur Najihah & Hassan, Mohammad Yusri & Abdullah, Hayati & Rahman, Hasimah Abdul & Abdullah, Md Pauzi & Hussin, Faridah & Bandi, Masilah, 2015. "Energy efficiency index as an indicator for measuring building energy performance: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 1-11.
    13. Ma, Nan & Aviv, Dorit & Guo, Hongshan & Braham, William W., 2021. "Measuring the right factors: A review of variables and models for thermal comfort and indoor air quality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    14. Moradi, Mohammad H. & Hajinazari, Mehdi & Jamasb, Shahriar & Paripour, Mahmoud, 2013. "An energy management system (EMS) strategy for combined heat and power (CHP) systems based on a hybrid optimization method employing fuzzy programming," Energy, Elsevier, vol. 49(C), pages 86-101.
    15. Rossella Marmo & Maurizio Nicolella & Francesco Polverino & Andrej Tibaut, 2019. "A Methodology for a Performance Information Model to Support Facility Management," Sustainability, MDPI, vol. 11(24), pages 1-25, December.
    16. Fadi Kahwash & Basel Barakat & Ahmad Taha & Qammer H. Abbasi & Muhammad Ali Imran, 2021. "Optimising Electrical Power Supply Sustainability Using a Grid-Connected Hybrid Renewable Energy System—An NHS Hospital Case Study," Energies, MDPI, vol. 14(21), pages 1-23, October.
    17. Kantola, Mikko & Saari, Arto, 2013. "Renewable vs. traditional energy management solutions – A Finnish hospital facility case," Renewable Energy, Elsevier, vol. 57(C), pages 539-545.
    18. Ming Hu & Eero Nippala & Kari Kallioharju & Sofie Pelsmakers, 2022. "Monte Carlo simulation approach to understand the cost variance for energy retrofit projects: comparative study of Finland and the United States," Construction Management and Economics, Taylor & Francis Journals, vol. 40(3), pages 207-222, March.
    19. Isa, Normazlina Mat & Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2016. "A techno-economic assessment of a combined heat and power photovoltaic/fuel cell/battery energy system in Malaysia hospital," Energy, Elsevier, vol. 112(C), pages 75-90.
    20. Carvalho, Monica & Lozano, Miguel A. & Serra, Luis M., 2012. "Multicriteria synthesis of trigeneration systems considering economic and environmental aspects," Applied Energy, Elsevier, vol. 91(1), pages 245-254.
    21. Liliya Satalkina & Gerald Steiner, 2020. "Digital Entrepreneurship and its Role in Innovation Systems: A Systematic Literature Review as a Basis for Future Research Avenues for Sustainable Transitions," Sustainability, MDPI, vol. 12(7), pages 1-27, April.
    22. Jing, Rui & Wang, Meng & Brandon, Nigel & Zhao, Yingru, 2017. "Multi-criteria evaluation of solid oxide fuel cell based combined cooling heating and power (SOFC-CCHP) applications for public buildings in China," Energy, Elsevier, vol. 141(C), pages 273-289.
    23. Pedro Paulo Fernandes da Silva & Alberto Hernandez Neto & Ildo Luis Sauer, 2021. "Evaluation of Model Calibration Method for Simulation Performance of a Public Hospital in Brazil," Energies, MDPI, vol. 14(13), pages 1-20, June.
    24. Quan Wen & Zhongfu Li & Yifeng Peng & Baorong Guo, 2020. "Assessing the Effectiveness of Building Information Modeling in Developing Green Buildings from a Lifecycle Perspective," Sustainability, MDPI, vol. 12(23), pages 1-20, November.
    25. Philip M. Podsakoff & Scott B. MacKenzie & Daniel G. Bachrach & Nathan P. Podsakoff, 2005. "The influence of management journals in the 1980s and 1990s," Strategic Management Journal, Wiley Blackwell, vol. 26(5), pages 473-488, May.
    26. George Kyriakarakos & Anastasios Dounis, 2020. "Intelligent Management of Distributed Energy Resources for Increased Resilience and Environmental Sustainability of Hospitals," Sustainability, MDPI, vol. 12(18), pages 1-4, September.
    27. Eguaras-Martínez, María & Vidaurre-Arbizu, Marina & Martín-Gómez, César, 2014. "Simulation and evaluation of Building Information Modeling in a real pilot site," Applied Energy, Elsevier, vol. 114(C), pages 475-484.
    28. Vaziri, Shabnam Mahmoudzadeh & Rezaee, Babak & Monirian, Masoud Amel, 2020. "Utilizing renewable energy sources efficiently in hospitals using demand dispatch," Renewable Energy, Elsevier, vol. 151(C), pages 551-562.
    29. Calise, Francesco & Dentice d'Accadia, Massimo & Libertini, Luigi & Quiriti, Edoardo & Vicidomini, Maria, 2017. "A novel tool for thermoeconomic analysis and optimization of trigeneration systems: A case study for a hospital building in Italy," Energy, Elsevier, vol. 126(C), pages 64-87.
    30. Gimelli, Alfredo & Muccillo, Massimiliano, 2013. "Optimization criteria for cogeneration systems: Multi-objective approach and application in an hospital facility," Applied Energy, Elsevier, vol. 104(C), pages 910-923.
    31. Silveira, Jose Luz & Lamas, Wendell de Queiroz & Tuna, Celso Eduardo & Villela, Iraides Aparecida de Castro & Miro, Laura Siso, 2012. "Ecological efficiency and thermoeconomic analysis of a cogeneration system at a hospital," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2894-2906.
    32. Zheng, C.Y. & Wu, J.Y. & Zhai, X.Q. & Wang, R.Z., 2016. "Impacts of feed-in tariff policies on design and performance of CCHP system in different climate zones," Applied Energy, Elsevier, vol. 175(C), pages 168-179.
    33. Pizzolato, A. & Donato, F. & Verda, V. & Santarelli, M. & Sciacovelli, A., 2017. "CSP plants with thermocline thermal energy storage and integrated steam generator – Techno-economic modeling and design optimization," Energy, Elsevier, vol. 139(C), pages 231-246.
    34. Kristian Fabbri & Jacopo Gaspari & Laura Vandi, 2019. "Indoor Thermal Comfort of Pregnant Women in Hospital: A Case Study Evidence," Sustainability, MDPI, vol. 11(23), pages 1-24, November.
    35. Shabir Hussain Khahro & Danish Kumar & Fida Hussain Siddiqui & Tauha Hussain Ali & Muhammad Saleem Raza & Ali Raza Khoso, 2021. "Optimizing Energy Use, Cost and Carbon Emission through Building Information Modelling and a Sustainability Approach: A Case-Study of a Hospital Building," Sustainability, MDPI, vol. 13(7), pages 1-18, March.
    36. Dascalaki, E.G. & Balaras, C.A. & Gaglia, A.G. & Droutsa, K.G. & Kontoyiannidis, S., 2012. "Energy performance of buildings—EPBD in Greece," Energy Policy, Elsevier, vol. 45(C), pages 469-477.
    37. Silvia Cesari & Paolo Valdiserri & Maddalena Coccagna & Sante Mazzacane, 2020. "The Energy Saving Potential of Wide Windows in Hospital Patient Rooms, Optimizing the Type of Glazing and Lighting Control Strategy under Different Climatic Conditions," Energies, MDPI, vol. 13(8), pages 1-24, April.
    38. Howard, B. & Modi, V., 2017. "Examination of the optimal operation of building scale combined heat and power systems under disparate climate and GHG emissions rates," Applied Energy, Elsevier, vol. 185(P1), pages 280-293.
    39. Ru Ji & Shilin Qu, 2019. "Investigation and Evaluation of Energy Consumption Performance for Hospital Buildings in China," Sustainability, MDPI, vol. 11(6), pages 1-14, March.
    40. Louise Sawyer & Simon Kemp & Patrick James & Michael Harper, 2021. "Assessment of a Nurse Led Energy Behavior Change Intervention in an NHS Community Hospital Ward," Energies, MDPI, vol. 14(20), pages 1-17, October.
    41. Rezvan, A. Taghipour & Gharneh, N. Shams & Gharehpetian, G.B., 2012. "Robust optimization of distributed generation investment in buildings," Energy, Elsevier, vol. 48(1), pages 455-463.
    42. Kun Lu & Xiaoyan Jiang & Vivian W. Y. Tam & Mengyun Li & Hongyu Wang & Bo Xia & Qing Chen, 2019. "Development of a Carbon Emissions Analysis Framework Using Building Information Modeling and Life Cycle Assessment for the Construction of Hospital Projects," Sustainability, MDPI, vol. 11(22), pages 1-18, November.
    43. Capozzoli, Alfonso & Piscitelli, Marco Savino & Neri, Francesco & Grassi, Daniele & Serale, Gianluca, 2016. "A novel methodology for energy performance benchmarking of buildings by means of Linear Mixed Effect Model: The case of space and DHW heating of out-patient Healthcare Centres," Applied Energy, Elsevier, vol. 171(C), pages 592-607.
    44. Bertone, Edoardo & Sahin, Oz & Stewart, Rodney A. & Zou, Patrick X.W. & Alam, Morshed & Hampson, Keith & Blair, Evan, 2018. "Role of financial mechanisms for accelerating the rate of water and energy efficiency retrofits in Australian public buildings: Hybrid Bayesian Network and System Dynamics modelling approach," Applied Energy, Elsevier, vol. 210(C), pages 409-419.
    45. Buonomano, Annamaria & Calise, Francesco & Ferruzzi, Gabriele & Palombo, Adolfo, 2014. "Dynamic energy performance analysis: Case study for energy efficiency retrofits of hospital buildings," Energy, Elsevier, vol. 78(C), pages 555-572.
    46. Ahn, Hyeunguk & Rim, Donghyun & Freihaut, James D., 2018. "Performance assessment of hybrid chiller systems for combined cooling, heating and power production," Applied Energy, Elsevier, vol. 225(C), pages 501-512.
    47. Wu, Qiong & Ren, Hongbo & Gao, Weijun & Ren, Jianxing, 2016. "Multi-objective optimization of a distributed energy network integrated with heating interchange," Energy, Elsevier, vol. 109(C), pages 353-364.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chro Hama Radha, 2023. "Retrofitting for Improving Indoor Air Quality and Energy Efficiency in the Hospital Building," Sustainability, MDPI, vol. 15(4), pages 1-20, February.
    2. Francesco Calise & Francesco Liberato Cappiello & Luca Cimmino & Massimo Dentice d’Accadia & Maria Vicidomini, 2024. "A Novel Layout for Combined Heat and Power Production for a Hospital Based on a Solid Oxide Fuel Cell," Energies, MDPI, vol. 17(5), pages 1-21, February.
    3. Chen, Xiaoyuan & Chen, Yu & Zhang, Mingshun & Jiang, Shan & Gou, Huayu & Pang, Zhou & Shen, Boyang, 2021. "Hospital-oriented quad-generation (HOQG)—A combined cooling, heating, power and gas (CCHPG) system," Applied Energy, Elsevier, vol. 300(C).
    4. Gimelli, A. & Mottola, F. & Muccillo, M. & Proto, D. & Amoresano, A. & Andreotti, A. & Langella, G., 2019. "Optimal configuration of modular cogeneration plants integrated by a battery energy storage system providing peak shaving service," Applied Energy, Elsevier, vol. 242(C), pages 974-993.
    5. Isa, Normazlina Mat & Tan, Chee Wei & Yatim, A.H.M., 2018. "A comprehensive review of cogeneration system in a microgrid: A perspective from architecture and operating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2236-2263.
    6. Afzali, Sayyed Faridoddin & Mahalec, Vladimir, 2017. "Optimal design, operation and analytical criteria for determining optimal operating modes of a CCHP with fired HRSG, boiler, electric chiller and absorption chiller," Energy, Elsevier, vol. 139(C), pages 1052-1065.
    7. Capozzoli, Alfonso & Piscitelli, Marco Savino & Neri, Francesco & Grassi, Daniele & Serale, Gianluca, 2016. "A novel methodology for energy performance benchmarking of buildings by means of Linear Mixed Effect Model: The case of space and DHW heating of out-patient Healthcare Centres," Applied Energy, Elsevier, vol. 171(C), pages 592-607.
    8. Rosa Francesca De Masi & Nicoletta Del Regno & Antonio Gigante & Silvia Ruggiero & Alessandro Russo & Francesco Tariello & Giuseppe Peter Vanoli, 2023. "The Importance of Investing in the Energy Refurbishment of Hospitals: Results of a Case Study in a Mediterranean Climate," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    9. Pipicelli, Michele & Muccillo, Massimiliano & Gimelli, Alfredo, 2023. "Influence of the control strategy on the performance of hybrid polygeneration energy system using a prescient model predictive control," Applied Energy, Elsevier, vol. 329(C).
    10. Afzali, Sayyed Faridoddin & Cotton, James S. & Mahalec, Vladimir, 2020. "Urban community energy systems design under uncertainty for specified levels of carbon dioxide emissions," Applied Energy, Elsevier, vol. 259(C).
    11. Ahn, Hyeunguk & Freihaut, James D. & Rim, Donghyun, 2019. "Economic feasibility of combined cooling, heating, and power (CCHP) systems considering electricity standby tariffs," Energy, Elsevier, vol. 169(C), pages 420-432.
    12. Ascione, Fabrizio & Bianco, Nicola & De Stasio, Claudio & Mauro, Gerardo Maria & Vanoli, Giuseppe Peter, 2016. "Multi-stage and multi-objective optimization for energy retrofitting a developed hospital reference building: A new approach to assess cost-optimality," Applied Energy, Elsevier, vol. 174(C), pages 37-68.
    13. Pina, Eduardo A. & Lozano, Miguel A. & Serra, Luis M., 2021. "Assessing the influence of legal constraints on the integration of renewable energy technologies in polygeneration systems for buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    14. Li, Longxi & Yu, Shiwei & Mu, Hailin & Li, Huanan, 2018. "Optimization and evaluation of CCHP systems considering incentive policies under different operation strategies," Energy, Elsevier, vol. 162(C), pages 825-840.
    15. Pina, Eduardo A. & Lozano, Miguel A. & Ramos, José C. & Serra, Luis M., 2020. "Tackling thermal integration in the synthesis of polygeneration systems for buildings," Applied Energy, Elsevier, vol. 269(C).
    16. Małgorzata Cygańska & Magdalena Kludacz-Alessandri, 2021. "Determinants of Electrical and Thermal Energy Consumption in Hospitals According to Climate Zones in Poland," Energies, MDPI, vol. 14(22), pages 1-24, November.
    17. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    18. Li, C.Y. & Deethayat, T. & Wu, J.Y. & Kiatsiriroat, T. & Wang, R.Z., 2018. "Simulation and evaluation of a biomass gasification-based combined cooling, heating, and power system integrated with an organic Rankine cycle," Energy, Elsevier, vol. 158(C), pages 238-255.
    19. Isa, Normazlina Mat & Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2016. "A techno-economic assessment of a combined heat and power photovoltaic/fuel cell/battery energy system in Malaysia hospital," Energy, Elsevier, vol. 112(C), pages 75-90.
    20. Xin Zhao & Yanqi Chen & Gang Xu & Heng Chen, 2022. "Economic Assessment of Operation Strategies on Park-Level Integrated Energy System Coupled with Biogas: A Case Study in a Sewage Treatment Plant," Energies, MDPI, vol. 16(1), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:2:p:755-:d:1029633. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.