IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v57y2013icp539-545.html
   My bibliography  Save this article

Renewable vs. traditional energy management solutions – A Finnish hospital facility case

Author

Listed:
  • Kantola, Mikko
  • Saari, Arto

Abstract

This article discusses the current price situation in the Finnish energy market. The aim of the study was to calculate the life-cycle costs (LCC) of 12 energy management systems and compare the prices. Surprisingly, the most polluting and commonly used solution, combination of district heating and grid electricity, was also the most expensive solution. The main reason for this is the increase in energy prices in Finland in the twenty-first century. According to the calculations, when considering a facility the size of the Espoo Hospital, the most affordable solutions were biogas energy, wood chip heating and ground source heating. The differences were relatively small between all solutions other than biogas. Biogas energy is by far the most affordable solution. However, it is only suitable for large-scale projects and some uncertainty risk has to be added because the system is not yet commonly used. Regarding the other unorthodox systems, solar electricity was the most expensive method; similar to the situation with snow storage cooling, which needs to entail certain societal benefits for it to be cost-effective. A sensitivity analysis was also conducted using four variations; however, significant differences to the original calculations were not discovered.

Suggested Citation

  • Kantola, Mikko & Saari, Arto, 2013. "Renewable vs. traditional energy management solutions – A Finnish hospital facility case," Renewable Energy, Elsevier, vol. 57(C), pages 539-545.
  • Handle: RePEc:eee:renene:v:57:y:2013:i:c:p:539-545
    DOI: 10.1016/j.renene.2013.02.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113001328
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.02.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alanne, Kari & Saari, Arto, 2004. "Sustainable small-scale CHP technologies for buildings: the basis for multi-perspective decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(5), pages 401-431, October.
    2. Saari, Arto & Kalamees, Targo & Jokisalo, Juha & Michelsson, Rasmus & Alanne, Kari & Kurnitski, Jarek, 2012. "Financial viability of energy-efficiency measures in a new detached house design in Finland," Applied Energy, Elsevier, vol. 92(C), pages 76-83.
    3. Valkila, Noora & Saari, Arto, 2010. "Urgent need for new approach to energy policy: The case of Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2068-2076, September.
    4. Alanne, Kari & Saari, Arto, 2006. "Distributed energy generation and sustainable development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 10(6), pages 539-558, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed, Ayman & Hamdy, Mohamed & Hasan, Ala & Sirén, Kai, 2015. "The performance of small scale multi-generation technologies in achieving cost-optimal and zero-energy office building solutions," Applied Energy, Elsevier, vol. 152(C), pages 94-108.
    2. Mazhar, Abdur Rehman & Liu, Shuli & Shukla, Ashish, 2018. "A state of art review on the district heating systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 420-439.
    3. Ebru Hancioglu Kuzgunkaya, 2019. "Energy performance assessment in terms of primary energy and exergy analyses of the nursing home and rehabilitation center," Energy & Environment, , vol. 30(8), pages 1506-1520, December.
    4. Tuan-Viet Hoang & Pouya Ifaei & Kijeon Nam & Jouan Rashidi & Soonho Hwangbo & Jong-Min Oh & ChangKyoo Yoo, 2018. "Optimal Management of a Hybrid Renewable Energy System Coupled with a Membrane Bioreactor Using Enviro-Economic and Power Pinch Analyses for Sustainable Climate Change Adaption," Sustainability, MDPI, vol. 11(1), pages 1-22, December.
    5. Edrees Yahya Alhawsawi & Hanan Mikhael D. Habbi & Mansour Hawsawi & Mohamed A. Zohdy, 2023. "Optimal Design and Operation of Hybrid Renewable Energy Systems for Oakland University," Energies, MDPI, vol. 16(15), pages 1-26, August.
    6. Maria Psillaki & Nikolaos Apostolopoulos & Ilias Makris & Panagiotis Liargovas & Sotiris Apostolopoulos & Panos Dimitrakopoulos & George Sklias, 2023. "Hospitals’ Energy Efficiency in the Perspective of Saving Resources and Providing Quality Services through Technological Options: A Systematic Literature Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
    7. Rosa Francesca De Masi & Nicoletta Del Regno & Antonio Gigante & Silvia Ruggiero & Alessandro Russo & Francesco Tariello & Giuseppe Peter Vanoli, 2023. "The Importance of Investing in the Energy Refurbishment of Hospitals: Results of a Case Study in a Mediterranean Climate," Sustainability, MDPI, vol. 15(14), pages 1-20, July.
    8. Janghorban Esfahani, Iman & Lee, SeungChul & Yoo, ChangKyoo, 2015. "Extended-power pinch analysis (EPoPA) for integration of renewable energy systems with battery/hydrogen storages," Renewable Energy, Elsevier, vol. 80(C), pages 1-14.
    9. Małgorzata Cygańska & Magdalena Kludacz-Alessandri, 2021. "Determinants of Electrical and Thermal Energy Consumption in Hospitals According to Climate Zones in Poland," Energies, MDPI, vol. 14(22), pages 1-24, November.
    10. Carpaneto, E. & Lazzeroni, P. & Repetto, M., 2015. "Optimal integration of solar energy in a district heating network," Renewable Energy, Elsevier, vol. 75(C), pages 714-721.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Iacobescu, Flavius & Badescu, Viorel, 2011. "Metamorphoses of cogeneration-based district heating in Romania: A case study," Energy Policy, Elsevier, vol. 39(1), pages 269-280, January.
    2. Alanne, Kari & Cao, Sunliang, 2019. "An overview of the concept and technology of ubiquitous energy," Applied Energy, Elsevier, vol. 238(C), pages 284-302.
    3. Valkila, N. & Saari, A., 2013. "Experts' view on Finland's energy policy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 283-290.
    4. Valkila, Noora & Saari, Arto, 2010. "Urgent need for new approach to energy policy: The case of Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2068-2076, September.
    5. Eid, Cherrelle & Codani, Paul & Perez, Yannick & Reneses, Javier & Hakvoort, Rudi, 2016. "Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 237-247.
    6. Perry, Simon & Klemeš, Jiří & Bulatov, Igor, 2008. "Integrating waste and renewable energy to reduce the carbon footprint of locally integrated energy sectors," Energy, Elsevier, vol. 33(10), pages 1489-1497.
    7. Funcke, Simon & Bauknecht, Dierk, 2016. "Typology of centralised and decentralised visions for electricity infrastructure," Utilities Policy, Elsevier, vol. 40(C), pages 67-74.
    8. Moroni, Stefano & Antoniucci, Valentina & Bisello, Adriano, 2016. "Energy sprawl, land taking and distributed generation: towards a multi-layered density," Energy Policy, Elsevier, vol. 98(C), pages 266-273.
    9. Sivakumar, S. & Sathik, M. Jagabar & Manoj, P.S. & Sundararajan, G., 2016. "An assessment on performance of DC–DC converters for renewable energy applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1475-1485.
    10. Anna Borkovcová & Miloslava Černá & Marcela Sokolová, 2022. "Blockchain in the Energy Sector—Systematic Review," Sustainability, MDPI, vol. 14(22), pages 1-12, November.
    11. Al Moussawi, Houssein & Fardoun, Farouk & Louahlia, Hasna, 2017. "Selection based on differences between cogeneration and trigeneration in various prime mover technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 491-511.
    12. Li, Sheng & Sui, Jun & Jin, Hongguang & Zheng, Jianjiao, 2013. "Full chain energy performance for a combined cooling, heating and power system running with methanol and solar energy," Applied Energy, Elsevier, vol. 112(C), pages 673-681.
    13. De Boeck, L. & Verbeke, S. & Audenaert, A. & De Mesmaeker, L., 2015. "Improving the energy performance of residential buildings: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 960-975.
    14. Botelho, D.F. & de Oliveira, L.W. & Dias, B.H. & Soares, T.A. & Moraes, C.A., 2022. "Prosumer integration into the Brazilian energy sector: An overview of innovative business models and regulatory challenges," Energy Policy, Elsevier, vol. 161(C).
    15. Razieh Nejabat & Marina Van Geenhuizen, 2019. "Entrepreneurial Risk-Taking in Sustainable Energy: University Spin-Off Firms and Market Introduction in Northwest Europe," Sustainability, MDPI, vol. 11(24), pages 1-23, December.
    16. Streimikiene, Dalia & Baležentis, Tomas, 2013. "Multi-criteria assessment of small scale CHP technologies in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 183-189.
    17. Mohamed Hamdy & Gerardo Maria Mauro, 2017. "Multi-Objective Optimization of Building Energy Design to Reconcile Collective and Private Perspectives: CO 2 -eq vs. Discounted Payback Time," Energies, MDPI, vol. 10(7), pages 1-26, July.
    18. Newbery, David & Pollitt, Michael G. & Ritz, Robert A. & Strielkowski, Wadim, 2018. "Market design for a high-renewables European electricity system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 695-707.
    19. Ferreira, Ana C. & Nunes, Manuel L. & Teixeira, José C.F. & Martins, Luís A.S.B. & Teixeira, Senhorinha F.C.F., 2016. "Thermodynamic and economic optimization of a solar-powered Stirling engine for micro-cogeneration purposes," Energy, Elsevier, vol. 111(C), pages 1-17.
    20. Maghanki, Maryam Mohammadi & Ghobadian, Barat & Najafi, Gholamhassan & Galogah, Reza Janzadeh, 2013. "Micro combined heat and power (MCHP) technologies and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 510-524.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:57:y:2013:i:c:p:539-545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.