A novel methodology for energy performance benchmarking of buildings by means of Linear Mixed Effect Model: The case of space and DHW heating of out-patient Healthcare Centres
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2016.03.083
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Chung, Mo & Park, Hwa-Choon, 2015. "Comparison of building energy demand for hotels, hospitals, and offices in Korea," Energy, Elsevier, vol. 92(P3), pages 383-393.
- Murray, Joe & Pahl, O. & Burek, S., 2008. "Evaluating the scope for energy-efficiency improvements in the public sector: Benchmarking NHSScotland's smaller health buildings," Energy Policy, Elsevier, vol. 36(3), pages 1236-1242, March.
- Filogamo, Luana & Peri, Giorgia & Rizzo, Gianfranco & Giaccone, Antonino, 2014. "On the classification of large residential buildings stocks by sample typologies for energy planning purposes," Applied Energy, Elsevier, vol. 135(C), pages 825-835.
- Hong, Tianzhen & Yang, Le & Hill, David & Feng, Wei, 2014. "Data and analytics to inform energy retrofit of high performance buildings," Applied Energy, Elsevier, vol. 126(C), pages 90-106.
- Lee, Sang Hoon & Hong, Tianzhen & Piette, Mary Ann & Taylor-Lange, Sarah C., 2015. "Energy retrofit analysis toolkits for commercial buildings: A review," Energy, Elsevier, vol. 89(C), pages 1087-1100.
- Chung, William & Hui, Y.V. & Lam, Y. Miu, 2006. "Benchmarking the energy efficiency of commercial buildings," Applied Energy, Elsevier, vol. 83(1), pages 1-14, January.
- Chung, William, 2012. "Using the fuzzy linear regression method to benchmark the energy efficiency of commercial buildings," Applied Energy, Elsevier, vol. 95(C), pages 45-49.
- Vu, D.H. & Muttaqi, K.M. & Agalgaonkar, A.P., 2015. "A variance inflation factor and backward elimination based robust regression model for forecasting monthly electricity demand using climatic variables," Applied Energy, Elsevier, vol. 140(C), pages 385-394.
- Aydinalp, Merih & Ismet Ugursal, V. & Fung, Alan S., 2004. "Modeling of the space and domestic hot-water heating energy-consumption in the residential sector using neural networks," Applied Energy, Elsevier, vol. 79(2), pages 159-178, October.
- Gimelli, Alfredo & Muccillo, Massimiliano, 2013. "Optimization criteria for cogeneration systems: Multi-objective approach and application in an hospital facility," Applied Energy, Elsevier, vol. 104(C), pages 910-923.
- Chung, William, 2011. "Review of building energy-use performance benchmarking methodologies," Applied Energy, Elsevier, vol. 88(5), pages 1470-1479, May.
- Braun, M.R. & Altan, H. & Beck, S.B.M., 2014. "Using regression analysis to predict the future energy consumption of a supermarket in the UK," Applied Energy, Elsevier, vol. 130(C), pages 305-313.
- Mavrotas, George & Florios, Kostas & Vlachou, Dimitra, 2010. "Energy planning of a hospital using Mathematical Programming and Monte Carlo simulation for dealing with uncertainty in the economic parameters," MPRA Paper 105754, University Library of Munich, Germany.
- Hong, Tianzhen & Piette, Mary Ann & Chen, Yixing & Lee, Sang Hoon & Taylor-Lange, Sarah C. & Zhang, Rongpeng & Sun, Kaiyu & Price, Phillip, 2015. "Commercial Building Energy Saver: An energy retrofit analysis toolkit," Applied Energy, Elsevier, vol. 159(C), pages 298-309.
- Wang, Endong, 2015. "Benchmarking whole-building energy performance with multi-criteria technique for order preference by similarity to ideal solution using a selective objective-weighting approach," Applied Energy, Elsevier, vol. 146(C), pages 92-103.
- Li, Zhengwei & Han, Yanmin & Xu, Peng, 2014. "Methods for benchmarking building energy consumption against its past or intended performance: An overview," Applied Energy, Elsevier, vol. 124(C), pages 325-334.
- Fabrizio, Enrico & Corrado, Vincenzo & Filippi, Marco, 2010. "A model to design and optimize multi-energy systems in buildings at the design concept stage," Renewable Energy, Elsevier, vol. 35(3), pages 644-655.
- Manfren, Massimiliano & Aste, Niccolò & Moshksar, Reza, 2013. "Calibration and uncertainty analysis for computer models – A meta-model based approach for integrated building energy simulation," Applied Energy, Elsevier, vol. 103(C), pages 627-641.
- Khodakarami, Jamal & Nasrollahi, Nazanin, 2012. "Thermal comfort in hospitals – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4071-4077.
- Buonomano, Annamaria & Calise, Francesco & Ferruzzi, Gabriele & Palombo, Adolfo, 2014. "Dynamic energy performance analysis: Case study for energy efficiency retrofits of hospital buildings," Energy, Elsevier, vol. 78(C), pages 555-572.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wang, Endong & Alp, Neslihan & Shi, Jonathan & Wang, Chao & Zhang, Xiaodong & Chen, Hong, 2017. "Multi-criteria building energy performance benchmarking through variable clustering based compromise TOPSIS with objective entropy weighting," Energy, Elsevier, vol. 125(C), pages 197-210.
- Petojević, Zorana & Gospavić, Radovan & Todorović, Goran, 2018. "Estimation of thermal impulse response of a multi-layer building wall through in-situ experimental measurements in a dynamic regime with applications," Applied Energy, Elsevier, vol. 228(C), pages 468-486.
- Capozzoli, Alfonso & Piscitelli, Marco Savino & Brandi, Silvio & Grassi, Daniele & Chicco, Gianfranco, 2018. "Automated load pattern learning and anomaly detection for enhancing energy management in smart buildings," Energy, Elsevier, vol. 157(C), pages 336-352.
- Cai, Wei & Liu, Fei & Zhang, Hua & Liu, Peiji & Tuo, Junbo, 2017. "Development of dynamic energy benchmark for mass production in machining systems for energy management and energy-efficiency improvement," Applied Energy, Elsevier, vol. 202(C), pages 715-725.
- Chung, William & Yeung, Iris M.H., 2017. "Benchmarking by convex non-parametric least squares with application on the energy performance of office buildings," Applied Energy, Elsevier, vol. 203(C), pages 454-462.
- Maria Psillaki & Nikolaos Apostolopoulos & Ilias Makris & Panagiotis Liargovas & Sotiris Apostolopoulos & Panos Dimitrakopoulos & George Sklias, 2023. "Hospitals’ Energy Efficiency in the Perspective of Saving Resources and Providing Quality Services through Technological Options: A Systematic Literature Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
- Piscitelli, Marco Savino & Giudice, Rocco & Capozzoli, Alfonso, 2024. "A holistic time series-based energy benchmarking framework for applications in large stocks of buildings," Applied Energy, Elsevier, vol. 357(C).
- Talita Mariane Cristino & Antonio Faria Neto & Antonio Fernando Branco Costa, 2018. "Energy efficiency in buildings: analysis of scientific literature and identification of data analysis techniques from a bibliometric study," Scientometrics, Springer;Akadémiai Kiadó, vol. 114(3), pages 1275-1326, March.
- Gonzalo Sánchez-Barroso & Jaime González-Domínguez & Justo García-Sanz-Calcedo, 2020. "Potential Savings in DHW Facilities through the Use of Solar Thermal Energy in the Hospitals of Extremadura (Spain)," IJERPH, MDPI, vol. 17(8), pages 1-16, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hong, Tianzhen & Piette, Mary Ann & Chen, Yixing & Lee, Sang Hoon & Taylor-Lange, Sarah C. & Zhang, Rongpeng & Sun, Kaiyu & Price, Phillip, 2015. "Commercial Building Energy Saver: An energy retrofit analysis toolkit," Applied Energy, Elsevier, vol. 159(C), pages 298-309.
- Chung, William & Yeung, Iris M.H., 2017. "Benchmarking by convex non-parametric least squares with application on the energy performance of office buildings," Applied Energy, Elsevier, vol. 203(C), pages 454-462.
- Wang, Endong, 2015. "Benchmarking whole-building energy performance with multi-criteria technique for order preference by similarity to ideal solution using a selective objective-weighting approach," Applied Energy, Elsevier, vol. 146(C), pages 92-103.
- Zhou, Yuren & Lork, Clement & Li, Wen-Tai & Yuen, Chau & Keow, Yeong Ming, 2019. "Benchmarking air-conditioning energy performance of residential rooms based on regression and clustering techniques," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
- Sun, Kaiyu & Hong, Tianzhen & Taylor-Lange, Sarah C. & Piette, Mary Ann, 2016. "A pattern-based automated approach to building energy model calibration," Applied Energy, Elsevier, vol. 165(C), pages 214-224.
- Juaidi, Adel & AlFaris, Fadi & Montoya, Francisco G. & Manzano-Agugliaro, Francisco, 2016. "Energy benchmarking for shopping centers in Gulf Coast region," Energy Policy, Elsevier, vol. 91(C), pages 247-255.
- Moya, Diego & Torres, Roberto & Stegen, Sascha, 2016. "Analysis of the Ecuadorian energy audit practices: A review of energy efficiency promotion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 289-296.
- Yan, Chengchu & Wang, Shengwei & Xiao, Fu & Gao, Dian-ce, 2015. "A multi-level energy performance diagnosis method for energy information poor buildings," Energy, Elsevier, vol. 83(C), pages 189-203.
- Park, Hyo Seon & Lee, Minhyun & Kang, Hyuna & Hong, Taehoon & Jeong, Jaewook, 2016. "Development of a new energy benchmark for improving the operational rating system of office buildings using various data-mining techniques," Applied Energy, Elsevier, vol. 173(C), pages 225-237.
- Rachael Sherman & Hariharan Naganathan & Kristen Parrish, 2021. "Energy Savings Results from Small Commercial Building Retrofits in the US," Energies, MDPI, vol. 14(19), pages 1-16, September.
- Maria Psillaki & Nikolaos Apostolopoulos & Ilias Makris & Panagiotis Liargovas & Sotiris Apostolopoulos & Panos Dimitrakopoulos & George Sklias, 2023. "Hospitals’ Energy Efficiency in the Perspective of Saving Resources and Providing Quality Services through Technological Options: A Systematic Literature Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
- Li, Zhengwei & Han, Yanmin & Xu, Peng, 2014. "Methods for benchmarking building energy consumption against its past or intended performance: An overview," Applied Energy, Elsevier, vol. 124(C), pages 325-334.
- Benedetti, Miriam & Bonfa', Francesca & Bertini, Ilaria & Introna, Vito & Ubertini, Stefano, 2018. "Explorative study on Compressed Air Systems’ energy efficiency in production and use: First steps towards the creation of a benchmarking system for large and energy-intensive industrial firms," Applied Energy, Elsevier, vol. 227(C), pages 436-448.
- Wang, Ning & Wen, Zongguo & Liu, Mingqi & Guo, Jie, 2016. "Constructing an energy efficiency benchmarking system for coal production," Applied Energy, Elsevier, vol. 169(C), pages 301-308.
- Tian, Wei & Heo, Yeonsook & de Wilde, Pieter & Li, Zhanyong & Yan, Da & Park, Cheol Soo & Feng, Xiaohang & Augenbroe, Godfried, 2018. "A review of uncertainty analysis in building energy assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 285-301.
- Kapp, Sean & Choi, Jun-Ki & Hong, Taehoon, 2023. "Predicting industrial building energy consumption with statistical and machine-learning models informed by physical system parameters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 172(C).
- Niemierko, Rochus & Töppel, Jannick & Tränkler, Timm, 2019. "A D-vine copula quantile regression approach for the prediction of residential heating energy consumption based on historical data," Applied Energy, Elsevier, vol. 233, pages 691-708.
- Zheng, Donglin & Yu, Lijun & Wang, Lizhen, 2019. "A techno-economic-risk decision-making methodology for large-scale building energy efficiency retrofit using Monte Carlo simulation," Energy, Elsevier, vol. 189(C).
- Wang, Endong & Alp, Neslihan & Shi, Jonathan & Wang, Chao & Zhang, Xiaodong & Chen, Hong, 2017. "Multi-criteria building energy performance benchmarking through variable clustering based compromise TOPSIS with objective entropy weighting," Energy, Elsevier, vol. 125(C), pages 197-210.
- Andrews, Abigail & Jain, Rishee K., 2022. "Beyond Energy Efficiency: A clustering approach to embed demand flexibility into building energy benchmarking," Applied Energy, Elsevier, vol. 327(C).
More about this item
Keywords
Energy benchmarking analysis; Linear Mixed Effect Model; Healthcare Centres; Building energy performance; Monte Carlo simulation; Supervised learning technique;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:171:y:2016:i:c:p:592-607. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.