IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v450y2021ics0304380021001307.html
   My bibliography  Save this article

A Bayesian network with fuzzy mathematics for species habitat suitability analysis: A case with limited Angelica sinensis (Oliv.) Diels data

Author

Listed:
  • Zhang, Quanzhong
  • Wei, Haiyan
  • Liu, Jing
  • Zhao, Zefang
  • Ran, Qiao
  • Gu, Wei

Abstract

There are many different types of species distribution models (SDMs) that are widely used in the field of ecology. In this research, we explored a new advanced mechanism for predicting the distribution of species based on fuzzy membership function, principle of maximum entropy, fuzzy mathematics comprehensive evaluation, and the framework of Bayesian networks. We use fuzzy mathematics and Bayesian network model (FBM) to simulate relationships between species’ habitats and environmental variables, and the relationship may be difficult to quantify effectively. FBM, which combines species data, environmental data, expert experience, and machine learning, could reduce the data and system error. In the case of medicinal plant, Angelica sinensis (Oliv.) Diels, many approaches have been applied, including nine learning sequence of sampling sites, three FBM models, two types of information classification by fuzzy mathematical classification (FMC) and equal interval classification (EIC), and the evaluation of AIC and log-likelihood. Through the comparison of reasoning results between FBM and fuzzy matter element model (FME) in testing sites, the result shows that the combination of objective data and empirical model structure makes FBM have better result output. Besides, FBM sensitivity analysis helps researchers explore in detail the impact of environmental factors on each level of species habitat suitability. The temperature factor has an important influence on the highly suitable, moderately suitable, and lowly suitable habitats of A. sinensis. Through FMC and sensitivity analysis, annual mean temperature (Bio1) in 5.92 °C-9.05 °C and mean temperature of warmest quarter (Bio10) in 14.80 °C-18.60 °C are the highly suitable habitat temperature range of A. sinensis.

Suggested Citation

  • Zhang, Quanzhong & Wei, Haiyan & Liu, Jing & Zhao, Zefang & Ran, Qiao & Gu, Wei, 2021. "A Bayesian network with fuzzy mathematics for species habitat suitability analysis: A case with limited Angelica sinensis (Oliv.) Diels data," Ecological Modelling, Elsevier, vol. 450(C).
  • Handle: RePEc:eee:ecomod:v:450:y:2021:i:c:s0304380021001307
    DOI: 10.1016/j.ecolmodel.2021.109560
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021001307
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109560?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koen, Hildegarde & de Villiers, J.P. & Roodt, Henk & de Waal, Alta, 2017. "An expert-driven causal model of the rhino poaching problem," Ecological Modelling, Elsevier, vol. 347(C), pages 29-39.
    2. Hamilton, Serena H. & Pollino, Carmel A. & Jakeman, Anthony J., 2015. "Habitat suitability modelling of rare species using Bayesian networks: Model evaluation under limited data," Ecological Modelling, Elsevier, vol. 299(C), pages 64-78.
    3. Uusitalo, Laura, 2007. "Advantages and challenges of Bayesian networks in environmental modelling," Ecological Modelling, Elsevier, vol. 203(3), pages 312-318.
    4. Haizhen Wang & Ratthachat Chatpatanasiri & Pairote Sattayatham, 2017. "Stock Trading Using PE ratio: A Dynamic Bayesian Network Modeling on Behavioral Finance and Fundamental Investment," Papers 1706.02985, arXiv.org.
    5. Zefang Zhao & Yanlong Guo & Haiyan Wei & Qiao Ran & Wei Gu, 2017. "Predictions of the Potential Geographical Distribution and Quality of a Gynostemma pentaphyllum Base on the Fuzzy Matter Element Model in China," Sustainability, MDPI, vol. 9(7), pages 1-15, July.
    6. Pliscoff, Patricio & Luebert, Federico & Hilger, Hartmut H. & Guisan, Antoine, 2014. "Effects of alternative sets of climatic predictors on species distribution models and associated estimates of extinction risk: A test with plants in an arid environment," Ecological Modelling, Elsevier, vol. 288(C), pages 166-177.
    7. Meyer, Spencer R. & Johnson, Michelle L. & Lilieholm, Robert J. & Cronan, Christopher S., 2014. "Development of a stakeholder-driven spatial modeling framework for strategic landscape planning using Bayesian networks across two urban-rural gradients in Maine, USA," Ecological Modelling, Elsevier, vol. 291(C), pages 42-57.
    8. Freeman, Elizabeth A. & Moisen, Gretchen G. & Frescino, Tracey S., 2012. "Evaluating effectiveness of down-sampling for stratified designs and unbalanced prevalence in Random Forest models of tree species distributions in Nevada," Ecological Modelling, Elsevier, vol. 233(C), pages 1-10.
    9. Coll, M. & Pennino, M. Grazia & Steenbeek, J. & Sole, J. & Bellido, J.M., 2019. "Predicting marine species distributions: Complementarity of food-web and Bayesian hierarchical modelling approaches," Ecological Modelling, Elsevier, vol. 405(C), pages 86-101.
    10. Hirotugu Akaike, 1987. "Factor analysis and AIC," Psychometrika, Springer;The Psychometric Society, vol. 52(3), pages 317-332, September.
    11. Xuhui Zhang & Haiyan Wei & Zefang Zhao & Jing Liu & Quanzhong Zhang & Xiaoyan Zhang & Wei Gu, 2020. "The Global Potential Distribution of Invasive Plants: Anredera cordifolia under Climate Change and Human Activity Based on Random Forest Models," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    12. Lu, Chun Yan & Gu, Wei & Dai, Ai Hua & Wei, Hai Yan, 2012. "Assessing habitat suitability based on geographic information system (GIS) and fuzzy: A case study of Schisandra sphenanthera Rehd. et Wils. in Qinling Mountains, China," Ecological Modelling, Elsevier, vol. 242(C), pages 105-115.
    13. Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
    14. Wang, Chong & Matthies, Hermann G., 2019. "Novel model calibration method via non-probabilistic interval characterization and Bayesian theory," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 84-92.
    15. Gieder, Katherina D. & Karpanty, Sarah M. & Fraser, James D. & Catlin, Daniel H. & Gutierrez, Benjamin T. & Plant, Nathaniel G. & Turecek, Aaron M. & Robert Thieler, E., 2014. "A Bayesian network approach to predicting nest presence of the federally-threatened piping plover (Charadrius melodus) using barrier island features," Ecological Modelling, Elsevier, vol. 276(C), pages 38-50.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kim, Yongeun & Lee, Yun-Sik & Lee, Minyoung & Wee, June & Hong, Jinsol & Cho, Kijong, 2024. "Exploring the optimal fuzzy rule-based modeling procedure to assess habitat suitability of indicator Collembola species in forest soils," Ecological Modelling, Elsevier, vol. 498(C).
    2. Duarte, Adam & Spaan, Robert S. & Peterson, James T. & Pearl, Christopher A. & Adams, Michael J., 2025. "Bayesian networks facilitate updating of species distribution and habitat suitability models," Ecological Modelling, Elsevier, vol. 501(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meineri, Eric & Dahlberg, C. Johan & Hylander, Kristoffer, 2015. "Using Gaussian Bayesian Networks to disentangle direct and indirect associations between landscape physiography, environmental variables and species distribution," Ecological Modelling, Elsevier, vol. 313(C), pages 127-136.
    2. Mulazzani, Luca & Manrique, Rosa & Malorgio, Giulio, 2017. "The Role of Strategic Behaviour in Ecosystem Service Modelling: Integrating Bayesian Networks With Game Theory," Ecological Economics, Elsevier, vol. 141(C), pages 234-244.
    3. Ropero, R.F. & Aguilera, P.A. & Rumí, R., 2015. "Analysis of the socioecological structure and dynamics of the territory using a hybrid Bayesian network classifier," Ecological Modelling, Elsevier, vol. 311(C), pages 73-87.
    4. Quanzhong Zhang & Haiyan Wei & Zefang Zhao & Jing Liu & Qiao Ran & Junhong Yu & Wei Gu, 2018. "Optimization of the Fuzzy Matter Element Method for Predicting Species Suitability Distribution Based on Environmental Data," Sustainability, MDPI, vol. 10(10), pages 1-16, September.
    5. Alexander V. Prishchepov & Elena V. Ponkina & Zhanli Sun & Daniel Muller, 2019. "Revealing the Determinants of Wheat Yields in the Siberian Breadbasket of Russia with Bayesian Networks," Spatial Economics=Prostranstvennaya Ekonomika, Economic Research Institute, Far Eastern Branch, Russian Academy of Sciences (Khabarovsk, Russia), issue 1, pages 39-83.
    6. Solveig Höfer & Alex Ziemba & Ghada El Serafy, 2020. "A Bayesian approach to ecosystem service trade-off analysis utilizing expert knowledge," Environment Systems and Decisions, Springer, vol. 40(1), pages 67-83, March.
    7. Xuhui Zhang & Haiyan Wei & Zefang Zhao & Jing Liu & Quanzhong Zhang & Xiaoyan Zhang & Wei Gu, 2020. "The Global Potential Distribution of Invasive Plants: Anredera cordifolia under Climate Change and Human Activity Based on Random Forest Models," Sustainability, MDPI, vol. 12(4), pages 1-18, February.
    8. Enrico Celio & Adrienne Grêt-Regamey, 2016. "Understanding farmers' influence on land-use change using a participatory Bayesian network approach in a pre-Alpine region in Switzerland," Journal of Environmental Planning and Management, Taylor & Francis Journals, vol. 59(11), pages 2079-2101, November.
    9. Vanslette, Kevin & Tohme, Tony & Youcef-Toumi, Kamal, 2020. "A general model validation and testing tool," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    10. Jiwon Lee & Midam An & Yongku Kim & Jung-In Seo, 2021. "Optimal Allocation for Electric Vehicle Charging Stations," Energies, MDPI, vol. 14(18), pages 1-10, September.
    11. Benjamin G Schultz & Catherine J Stevens & Peter E Keller & Barbara Tillmann, 2013. "A Sequence Identification Measurement Model to Investigate the Implicit Learning of Metrical Temporal Patterns," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-1, September.
    12. Daniela Andreini & Diego Rinallo & Giuseppe Pedeliento & Mara Bergamaschi, 2017. "Brands and Religion in the Secularized Marketplace and Workplace: Insights from the Case of an Italian Hospital Renamed After a Roman Catholic Pope," Journal of Business Ethics, Springer, vol. 141(3), pages 529-550, March.
    13. Andreas Wienke & Anne M. Herskind & Kaare Christensen & Axel Skytthe & Anatoli I. Yashin, 2002. "The influence of smoking and BMI on heritability in susceptibility to coronary heart disease," MPIDR Working Papers WP-2002-003, Max Planck Institute for Demographic Research, Rostock, Germany.
    14. Byrd, T. A. & Marshall, T. E., 1997. "Relating information technology investment to organizational performance: a causal model analysis," Omega, Elsevier, vol. 25(1), pages 43-56, February.
    15. Di Zhang & Xinping Yan & Zaili Yang & Jin Wang, 2014. "An accident data–based approach for congestion risk assessment of inland waterways: A Yangtze River case," Journal of Risk and Reliability, , vol. 228(2), pages 176-188, April.
    16. Berry, Brian J.L. & Okulicz-Kozaryn, Adam, 2008. "Are there ENSO signals in the macroeconomy," Ecological Economics, Elsevier, vol. 64(3), pages 625-633, January.
    17. Nicos Nicolaou & Scott Shane, 2019. "Common genetic effects on risk-taking preferences and choices," Journal of Risk and Uncertainty, Springer, vol. 59(3), pages 261-279, December.
    18. Stephen Richards, 2010. "Author's response," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 173(4), pages 920-924, October.
    19. Ken B Hanscombe & Maciej Trzaskowski & Claire M A Haworth & Oliver S P Davis & Philip S Dale & Robert Plomin, 2012. "Socioeconomic Status (SES) and Children's Intelligence (IQ): In a UK-Representative Sample SES Moderates the Environmental, Not Genetic, Effect on IQ," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-16, February.
    20. Jim Lewis & Kerrie Mengersen & Laurie Buys & Desley Vine & John Bell & Peter Morris & Gerard Ledwich, 2015. "Systems Modelling of the Socio-Technical Aspects of Residential Electricity Use and Network Peak Demand," PLOS ONE, Public Library of Science, vol. 10(7), pages 1-21, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:450:y:2021:i:c:s0304380021001307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.