IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v198y2017icp377-384.html
   My bibliography  Save this article

Supply chain model to assess the feasibility of incorporating a terminal between forests and biorefineries

Author

Listed:
  • Gautam, Shuva
  • LeBel, Luc
  • Carle, Marc-André

Abstract

This study examines the advantages of incorporating a terminal for forest biomass in an advanced biofuels supply chain network. Forest biomass as a feedstock is non-uniform, voluminous and high in moisture content (MC). This leads to inefficiencies during transportation and energy conversion process, posing a challenge for supply chains to remain profitable. The problem is exacerbated by seasonality in both supply and demand. A terminal in the biomass feedstock supply chain could help overcome these challenges, but adds a significant cost. A novel multi-period mixed-integer programming (MIP) model capable of taking into consideration biomass quality, seasonality, and weather related supply restrictions was developed. The model was applied in a case study to assess the benefits of incorporating a terminal in the supply chain. It was demonstrated that a terminal allowed delivery of feedstock 4–11% lower in MC, while reducing procurement costs by 11–32%. The benefits reported are sensitive to transportation and operating costs. The proposed model will serve as a valuable tool for practitioners to design supply chains, and assess the feasibility of using forest biomass for sustainable biofuels production.

Suggested Citation

  • Gautam, Shuva & LeBel, Luc & Carle, Marc-André, 2017. "Supply chain model to assess the feasibility of incorporating a terminal between forests and biorefineries," Applied Energy, Elsevier, vol. 198(C), pages 377-384.
  • Handle: RePEc:eee:appene:v:198:y:2017:i:c:p:377-384
    DOI: 10.1016/j.apenergy.2017.01.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261917300247
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2017.01.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Eriksson, Ljusk Ola & Bjorheden, Rolf, 1989. "Optimal storing, transport and processing for a forest-fuel supplier," European Journal of Operational Research, Elsevier, vol. 43(1), pages 26-33, November.
    2. Shabani, Nazanin & Sowlati, Taraneh, 2013. "A mixed integer non-linear programming model for tactical value chain optimization of a wood biomass power plant," Applied Energy, Elsevier, vol. 104(C), pages 353-361.
    3. Vukašinović, Vladimir & Gordić, Dušan, 2016. "Optimization and GIS-based combined approach for the determination of the most cost-effective investments in biomass sector," Applied Energy, Elsevier, vol. 178(C), pages 250-259.
    4. Sun, Yanwei & Wang, Run & Liu, Jian & Xiao, Lishan & Lin, Yanjie & Kao, William, 2013. "Spatial planning framework for biomass resources for power production at regional level: A case study for Fujian Province, China," Applied Energy, Elsevier, vol. 106(C), pages 391-406.
    5. Gunnarsson, Helene & Ronnqvist, Mikael & Lundgren, Jan T., 2004. "Supply chain modelling of forest fuel," European Journal of Operational Research, Elsevier, vol. 158(1), pages 103-123, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Malladi, Krishna Teja & Quirion-Blais, Olivier & Sowlati, Taraneh, 2018. "Development of a decision support tool for optimizing the short-term logistics of forest-based biomass," Applied Energy, Elsevier, vol. 216(C), pages 662-677.
    2. Mosayeb Dashtpeyma & Reza Ghodsi, 2021. "Forest Biomass and Bioenergy Supply Chain Resilience: A Systematic Literature Review on the Barriers and Enablers," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    3. Sfeir, Tamires de Almeida & Pécora, José Eduardo & Ruiz, Angel & LeBel, Luc, 2021. "Integrating natural wood drying and seasonal trucks’ workload restrictions into forestry transportation planning," Omega, Elsevier, vol. 98(C).
    4. Zhixue Liu & Shukun Wang & Yanfeng Ouyang, 2017. "Reliable Biomass Supply Chain Design under Feedstock Seasonality and Probabilistic Facility Disruptions," Energies, MDPI, vol. 10(11), pages 1-18, November.
    5. Malladi, Krishna Teja & Sowlati, Taraneh, 2018. "Biomass logistics: A review of important features, optimization modeling and the new trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 587-599.
    6. Razm, Sobhan & Brahimi, Nadjib & Hammami, Ramzi & Dolgui, Alexandre, 2023. "A production planning model for biorefineries with biomass perishability and biofuel transformation," International Journal of Production Economics, Elsevier, vol. 258(C).
    7. De Laporte, Aaron V. & Ripplinger, David G., 2019. "The effects of site selection, opportunity costs and transportation costs on bioethanol production," Renewable Energy, Elsevier, vol. 131(C), pages 73-82.
    8. Nicolas Mansuy & Julie Barrette & Jérôme Laganière & Warren Mabee & David Paré & Shuva Gautam & Evelyne Thiffault & Saeed Ghafghazi, 2018. "Salvage harvesting for bioenergy in Canada: From sustainable and integrated supply chain to climate change mitigation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(5), September.
    9. Mobtaker, A. & Ouhimmou, M. & Audy, J.-F. & Rönnqvist, M., 2021. "A review on decision support systems for tactical logistics planning in the context of forest bioeconomy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    10. Martín, Mariano & Grossmann, Ignacio E., 2018. "Optimal integration of renewable based processes for fuels and power production: Spain case study," Applied Energy, Elsevier, vol. 213(C), pages 595-610.
    11. Baburam Rijal & Luc LeBel & Shuva H. Gautam & Pierre Cantegril, 2020. "A Sequential Optimization Approach in Tactical Planning for Value Creation in the Forest Products Industry," Sustainability, MDPI, vol. 12(12), pages 1-23, June.
    12. Hoogstra-Klein, Marjanke A. & Meijboom, Kars, 2021. "A qualitative exploration of the wood product supply chain – investigating the possibilities and desirability of an increased demand orientation," Forest Policy and Economics, Elsevier, vol. 133(C).
    13. Roni, Mohammad S. & Thompson, David N. & Hartley, Damon S., 2019. "Distributed biomass supply chain cost optimization to evaluate multiple feedstocks for a biorefinery," Applied Energy, Elsevier, vol. 254(C).
    14. Hugo Guzmán-Bello & Iosvani López-Díaz & Miguel Aybar-Mejía & Jose Atilio de Frias, 2022. "A Review of Trends in the Energy Use of Biomass: The Case of the Dominican Republic," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    15. Prinz, Robert & Väätäinen, Kari & Laitila, Juha & Sikanen, Lauri & Asikainen, Antti, 2019. "Analysis of energy efficiency of forest chip supply systems using discrete-event simulation," Applied Energy, Elsevier, vol. 235(C), pages 1369-1380.
    16. Akhtari, Shaghaygh & Sowlati, Taraneh & Griess, Verena C., 2018. "Integrated strategic and tactical optimization of forest-based biomass supply chains to consider medium-term supply and demand variations," Applied Energy, Elsevier, vol. 213(C), pages 626-638.
    17. Ng, Rex T.L. & Maravelias, Christos T., 2017. "Economic and energetic analysis of biofuel supply chains," Applied Energy, Elsevier, vol. 205(C), pages 1571-1582.
    18. Anerud, Erik & Jirjis, Raida & Larsson, Gunnar & Eliasson, Lars, 2018. "Fuel quality of stored wood chips – Influence of semi-permeable covering material," Applied Energy, Elsevier, vol. 231(C), pages 628-634.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ba, Birome Holo & Prins, Christian & Prodhon, Caroline, 2016. "Models for optimization and performance evaluation of biomass supply chains: An Operations Research perspective," Renewable Energy, Elsevier, vol. 87(P2), pages 977-989.
    2. Shabani, Nazanin & Akhtari, Shaghaygh & Sowlati, Taraneh, 2013. "Value chain optimization of forest biomass for bioenergy production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 299-311.
    3. Razm, Sobhan & Brahimi, Nadjib & Hammami, Ramzi & Dolgui, Alexandre, 2023. "A production planning model for biorefineries with biomass perishability and biofuel transformation," International Journal of Production Economics, Elsevier, vol. 258(C).
    4. Shabani, Nazanin & Sowlati, Taraneh & Ouhimmou, Mustapha & Rönnqvist, Mikael, 2014. "Tactical supply chain planning for a forest biomass power plant under supply uncertainty," Energy, Elsevier, vol. 78(C), pages 346-355.
    5. Eriksson, Anders & Eliasson, Lars & Sikanen, Lauri & Hansson, Per-Anders & Jirjis, Raida, 2017. "Evaluation of delivery strategies for forest fuels applying a model for Weather-driven Analysis of Forest Fuel Systems (WAFFS)," Applied Energy, Elsevier, vol. 188(C), pages 420-430.
    6. Sosa, Amanda & Acuna, Mauricio & McDonnell, Kevin & Devlin, Ger, 2015. "Managing the moisture content of wood biomass for the optimisation of Ireland's transport supply strategy to bioenergy markets and competing industries," Energy, Elsevier, vol. 86(C), pages 354-368.
    7. Zailan, Roziah & Lim, Jeng Shiun & Manan, Zainuddin Abdul & Alwi, Sharifah Rafidah Wan & Mohammadi-ivatloo, Behnam & Jamaluddin, Khairulnadzmi, 2021. "Malaysia scenario of biomass supply chain-cogeneration system and optimization modeling development: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    8. Devlin, Ger & Talbot, Bruce, 2014. "Deriving cooperative biomass resource transport supply strategies in meeting co-firing energy regulations: A case for peat and wood fibre in Ireland," Applied Energy, Elsevier, vol. 113(C), pages 1700-1709.
    9. Eliasson, Lars & Eriksson, Anders & Mohtashami, Sima, 2017. "Analysis of factors affecting productivity and costs for a high-performance chip supply system," Applied Energy, Elsevier, vol. 185(P1), pages 497-505.
    10. Malladi, Krishna Teja & Quirion-Blais, Olivier & Sowlati, Taraneh, 2018. "Development of a decision support tool for optimizing the short-term logistics of forest-based biomass," Applied Energy, Elsevier, vol. 216(C), pages 662-677.
    11. Vukasinovic, Vladimir & Gordic, Dusan & Zivkovic, Marija & Koncalovic, Davor & Zivkovic, Dubravka, 2019. "Long-term planning methodology for improving wood biomass utilization," Energy, Elsevier, vol. 175(C), pages 818-829.
    12. Hugo Guzmán-Bello & Iosvani López-Díaz & Miguel Aybar-Mejía & Jose Atilio de Frias, 2022. "A Review of Trends in the Energy Use of Biomass: The Case of the Dominican Republic," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    13. Shu, Kesheng & Schneider, Uwe A. & Scheffran, Jürgen, 2017. "Optimizing the bioenergy industry infrastructure: Transportation networks and bioenergy plant locations," Applied Energy, Elsevier, vol. 192(C), pages 247-261.
    14. Wang, Xingwei & Cai, Yanpeng & Dai, Chao, 2014. "Evaluating China's biomass power production investment based on a policy benefit real options model," Energy, Elsevier, vol. 73(C), pages 751-761.
    15. Cambero, Claudia & Sowlati, Taraneh, 2014. "Assessment and optimization of forest biomass supply chains from economic, social and environmental perspectives – A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 36(C), pages 62-73.
    16. Sosa, Amanda & Acuna, Mauricio & McDonnell, Kevin & Devlin, Ger, 2015. "Controlling moisture content and truck configurations to model and optimise biomass supply chain logistics in Ireland," Applied Energy, Elsevier, vol. 137(C), pages 338-351.
    17. Jensen, Ida Græsted & Münster, Marie & Pisinger, David, 2017. "Optimizing the supply chain of biomass and biogas for a single plant considering mass and energy losses," European Journal of Operational Research, Elsevier, vol. 262(2), pages 744-758.
    18. Min Zhang & Guangyu Wang & Yi Gao & Zhenqi Wang & Feng Mi, 2017. "Trade-Offs between Economic and Environmental Optimization of the Forest Biomass Generation Supply Chain in Inner Mongolia, China," Sustainability, MDPI, vol. 9(11), pages 1-19, November.
    19. Malladi, Krishna Teja & Sowlati, Taraneh, 2018. "Biomass logistics: A review of important features, optimization modeling and the new trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 587-599.
    20. Akhtari, Shaghaygh & Sowlati, Taraneh & Griess, Verena C., 2018. "Integrated strategic and tactical optimization of forest-based biomass supply chains to consider medium-term supply and demand variations," Applied Energy, Elsevier, vol. 213(C), pages 626-638.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:198:y:2017:i:c:p:377-384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.