IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v12y2020i12p4932-d372632.html
   My bibliography  Save this article

A Sequential Optimization Approach in Tactical Planning for Value Creation in the Forest Products Industry

Author

Listed:
  • Baburam Rijal

    (Faculty of Forestry, Geography and Geomatics, Laval University, 2405 Rue de la Terrasse, Quebec City, QC G1V 0A6, Canada)

  • Luc LeBel

    (Faculty of Forestry, Geography and Geomatics, Laval University, 2405 Rue de la Terrasse, Quebec City, QC G1V 0A6, Canada
    FORAC Research Consortium, Laval University, 1065 Avenue de la Médecine, Quebec City, QC G1V 0A6, Canada)

  • Shuva H. Gautam

    (College of Natural Resources, University of Wisconsin-Stevens Point, Stevens Point, WI 54481, USA)

  • Pierre Cantegril

    (Faculty of Forestry, Geography and Geomatics, Laval University, 2405 Rue de la Terrasse, Quebec City, QC G1V 0A6, Canada)

Abstract

Strategic, tactical, and operation-level forest management plans are commonly formulated by forest planners following even-flow yield principles. Although strategic planning ensures a sustained supply of timber over the long term, it disregards individual mills’ requirements, which leads to discrepancy between supply and demand. We hypothesize that a value-based timber allocation decision, which accounts for individual mills’ demands during tactical level planning, reduces such discrepancy by increasing value over the entire supply chain. Three types of linear programming models were constructed: Model A—status quo volume-maximization model, Model B—supply chain net present value-maximization (NPV) model, and Model C—a novel approach with sub-models embedded that maximize the NPV of individual mills in the allocation decision. Our results showed that only 58% of the annual allowable cut was profitable and the mean net revenue per harvested area was $2455 ha −1 using Model A. The respective values using Models B and C were 64% and $3890 ha −1 and 96% and $4040 ha −1 , respectively, showing that Model C generated the highest net revenue for all mills. Such a method of value-based sequential optimization (Model C) will be crucial in sustainable use of forest products and sustaining future bioeconomy, particularly for managing mixed species stands that contain timber suitable for manufacturing a wide range of products with different market values.

Suggested Citation

  • Baburam Rijal & Luc LeBel & Shuva H. Gautam & Pierre Cantegril, 2020. "A Sequential Optimization Approach in Tactical Planning for Value Creation in the Forest Products Industry," Sustainability, MDPI, vol. 12(12), pages 1-23, June.
  • Handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:4932-:d:372632
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/12/12/4932/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/12/12/4932/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rijal, Baburam & Raulier, Frédéric & Martell, David L., 2018. "A value-added forest management policy reduces the impact of fire on timber production in Canadian boreal forests," Forest Policy and Economics, Elsevier, vol. 97(C), pages 21-32.
    2. Elisabetta Iossa & David Martimort, 2011. "The Theory of Incentives Applied to the Transport Sector," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 29, Edward Elgar Publishing.
    3. Cantegril, Pierre & Paradis, Gregory & LeBel, Luc & Raulier, Frédéric, 2019. "Bioenergy production to improve value-creation potential of strategic forest management plans in mixed-wood forests of Eastern Canada," Applied Energy, Elsevier, vol. 247(C), pages 171-181.
    4. Shabani, Nazanin & Akhtari, Shaghaygh & Sowlati, Taraneh, 2013. "Value chain optimization of forest biomass for bioenergy production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 23(C), pages 299-311.
    5. Andrés Weintraub & Carlos Romero, 2006. "Operations Research Models and the Management of Agricultural and Forestry Resources: A Review and Comparison," Interfaces, INFORMS, vol. 36(5), pages 446-457, October.
    6. Rijal, Baburam & Lussier, Jean-Martin, 2017. "Improving sustainability of value-added forest supply chain through coordinated production planning policy between forests and mills," Forest Policy and Economics, Elsevier, vol. 83(C), pages 45-57.
    7. Richard L. Church, 2007. "Tactical-Level Forest Management Models," International Series in Operations Research & Management Science, in: Andres Weintraub & Carlos Romero & Trond Bjørndal & Rafael Epstein & Jaime Miranda (ed.), Handbook Of Operations Research In Natural Resources, chapter 0, pages 343-363, Springer.
    8. Bouchard, M. & D’Amours, S. & Rönnqvist, M. & Azouzi, R. & Gunn, E., 2017. "Integrated optimization of strategic and tactical planning decisions in forestry," European Journal of Operational Research, Elsevier, vol. 259(3), pages 1132-1143.
    9. Näyhä, Annukka & Pesonen, Hanna-Leena, 2014. "Strategic change in the forest industry towards the biorefining business," Technological Forecasting and Social Change, Elsevier, vol. 81(C), pages 259-271.
    10. Teijo Palander & Hanna Haavikko & Emma Kortelainen & Kalle Kärhä, 2020. "Comparison of Energy Efficiency Indicators of Road Transportation for Modeling Environmental Sustainability in “Green” Circular Industry," Sustainability, MDPI, vol. 12(7), pages 1-22, March.
    11. Palander, Teijo & Haavikko, Hanna & Kärhä, Kalle, 2018. "Towards sustainable wood procurement in forest industry – The energy efficiency of larger and heavier vehicles in Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 100-118.
    12. Gautam, Shuva & LeBel, Luc & Carle, Marc-André, 2017. "Supply chain model to assess the feasibility of incorporating a terminal between forests and biorefineries," Applied Energy, Elsevier, vol. 198(C), pages 377-384.
    13. Eldon A. Gunn, 2007. "Models for Strategic Forest Management," International Series in Operations Research & Management Science, in: Andres Weintraub & Carlos Romero & Trond Bjørndal & Rafael Epstein & Jaime Miranda (ed.), Handbook Of Operations Research In Natural Resources, chapter 0, pages 317-341, Springer.
    14. Oscar Barros & Andres Weintraub, 1982. "Planning for a Vertically Integrated Forest Industry," Operations Research, INFORMS, vol. 30(6), pages 1168-1182, December.
    15. Rafael Epstein & Jenny Karlsson & Mikael Rönnqvist & Andres Weintraub, 2007. "Harvest Operational Models in Forestry," International Series in Operations Research & Management Science, in: Andres Weintraub & Carlos Romero & Trond Bjørndal & Rafael Epstein & Jaime Miranda (ed.), Handbook Of Operations Research In Natural Resources, chapter 0, pages 365-377, Springer.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Di Letizia, Gerardo & De Lucia, Caterina & Pazienza, Pasquale & Cappelletti, Giulio Mario, 2023. "Forest bioeconomy at regional scale: A systematic literature review and future policy perspectives," Forest Policy and Economics, Elsevier, vol. 155(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bisera Andrić Gušavac & Selman Karagoz & Milena Popović & Dragan Pamućar & Muhammet Deveci, 2023. "Reconcilement of conflicting goals: a novel operations research-based methodology for environmental management," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(8), pages 7423-7460, August.
    2. Rijal, Baburam & Raulier, Frédéric & Martell, David L., 2018. "A value-added forest management policy reduces the impact of fire on timber production in Canadian boreal forests," Forest Policy and Economics, Elsevier, vol. 97(C), pages 21-32.
    3. Mosayeb Dashtpeyma & Reza Ghodsi, 2021. "Forest Biomass and Bioenergy Supply Chain Resilience: A Systematic Literature Review on the Barriers and Enablers," Sustainability, MDPI, vol. 13(12), pages 1-21, June.
    4. Karl Duvemo & Tomas Lämås & Ljusk Eriksson & Peder Wikström, 2014. "Introducing cost-plus-loss analysis into a hierarchical forestry planning environment," Annals of Operations Research, Springer, vol. 219(1), pages 415-431, August.
    5. Morin, Michael & Gaudreault, Jonathan & Brotherton, Edith & Paradis, Frédérik & Rolland, Amélie & Wery, Jean & Laviolette, François, 2020. "Machine learning-based models of sawmills for better wood allocation planning," International Journal of Production Economics, Elsevier, vol. 222(C).
    6. Luo, Li & O'Hehir, Jim & Regan, Courtney M. & Meng, Li & Connor, Jeffery D. & Chow, Christopher W.K., 2021. "An integrated strategic and tactical optimization model for forest supply chain planning," Forest Policy and Economics, Elsevier, vol. 131(C).
    7. Teijo Palander, 2023. "Data-Driven Internal Carbon Pricing Mechanism for Improving Wood Procurement in Integrated Energy and Material Production," Energies, MDPI, vol. 16(8), pages 1-10, April.
    8. Malladi, Krishna Teja & Sowlati, Taraneh, 2018. "Biomass logistics: A review of important features, optimization modeling and the new trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 587-599.
    9. Prinz, Robert & Väätäinen, Kari & Laitila, Juha & Sikanen, Lauri & Asikainen, Antti, 2019. "Analysis of energy efficiency of forest chip supply systems using discrete-event simulation," Applied Energy, Elsevier, vol. 235(C), pages 1369-1380.
    10. Teijo Palander & Jari Takkinen, 2021. "The Optimum Wood Procurement Scenario and Its Dynamic Management for Integrated Energy and Material Production in Carbon-Neutral Forest Industry," Energies, MDPI, vol. 14(15), pages 1-19, July.
    11. Cantegril, Pierre & Paradis, Gregory & LeBel, Luc & Raulier, Frédéric, 2019. "Bioenergy production to improve value-creation potential of strategic forest management plans in mixed-wood forests of Eastern Canada," Applied Energy, Elsevier, vol. 247(C), pages 171-181.
    12. Teijo Palander & Stelian Alexandru Borz & Kalle Kärhä, 2021. "Impacts of Road Infrastructure on the Environmental Efficiency of High Capacity Transportation in Harvesting of Renewable Wood Energy," Energies, MDPI, vol. 14(2), pages 1-20, January.
    13. Santos, Andreia & Carvalho, Ana & Barbosa-Póvoa, Ana Paula & Marques, Alexandra & Amorim, Pedro, 2019. "Assessment and optimization of sustainable forest wood supply chains – A systematic literature review," Forest Policy and Economics, Elsevier, vol. 105(C), pages 112-135.
    14. Pamela Alvarez & Jorge Vera, 2014. "Application of Robust Optimization to the Sawmill Planning Problem," Annals of Operations Research, Springer, vol. 219(1), pages 457-475, August.
    15. Nicolas Mansuy & Julie Barrette & Jérôme Laganière & Warren Mabee & David Paré & Shuva Gautam & Evelyne Thiffault & Saeed Ghafghazi, 2018. "Salvage harvesting for bioenergy in Canada: From sustainable and integrated supply chain to climate change mitigation," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(5), September.
    16. Rijal, Baburam & Lussier, Jean-Martin, 2017. "Improving sustainability of value-added forest supply chain through coordinated production planning policy between forests and mills," Forest Policy and Economics, Elsevier, vol. 83(C), pages 45-57.
    17. David Martimort & Flavio Menezes & Myrna Wooders & ELISABETTA IOSSA & DAVID MARTIMORT, 2015. "The Simple Microeconomics of Public-Private Partnerships," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 17(1), pages 4-48, February.
    18. Venn, Tyron J. & Dorries, Jack W. & McGavin, Robert L., 2021. "A mathematical model to support investment in veneer and LVL manufacturing in subtropical eastern Australia," Forest Policy and Economics, Elsevier, vol. 128(C).
    19. Hoppe, Eva I. & Kusterer, David J. & Schmitz, Patrick W., 2013. "Public–private partnerships versus traditional procurement: An experimental investigation," Journal of Economic Behavior & Organization, Elsevier, vol. 89(C), pages 145-166.
    20. Hellsmark, Hans & Hansen, Teis, 2020. "A new dawn for (oil) incumbents within the bioeconomy? Trade-offs and lessons for policy," Energy Policy, Elsevier, vol. 145(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:12:y:2020:i:12:p:4932-:d:372632. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.