IDEAS home Printed from
   My bibliography  Save this article

Designing a green gas supply to meet regional seasonal demand – An operations research case study


  • Bekkering, J.
  • Hengeveld, E.J.
  • van Gemert, W.J.T.
  • Broekhuis, A.A.


One of the issues concerning the replacement of natural gas by green gas is the seasonal pattern of the gas demand. When constant production is assumed, this may limit the injected quantity of green gas into a gas grid to the level of the minimum gas demand in summer. A procedure was proposed to increase the gas demand coverage in a geographical region, i.e., the extent to which natural gas demand is replaced by green gas. This was done by modeling flexibility into farm-scale green gas supply chains. The procedure comprises two steps. In the first step, the types and number of green gas production units are determined, based on a desired gas demand coverage. The production types comprise time-varying biogas production, non-continuous biogas production (only in winter periods with each digester having a specified production time) and constant production including seasonal gas storage. In the second step locations of production units and injection stations are calculated, using mixed integer linear programming with cost price minimization being the objective. Five scenarios were defined with increasing gas demand coverage, representing a possible future development in natural gas replacement. The results show that production locations differ for each scenario, but are connected to a selection of injection stations, at least in the considered geographical region under the assumed preconditions. The cost price is mainly determined by the type of digesters needed. Increasing gas demand coverage does not necessarily mean a much higher cost price.

Suggested Citation

  • Bekkering, J. & Hengeveld, E.J. & van Gemert, W.J.T. & Broekhuis, A.A., 2015. "Designing a green gas supply to meet regional seasonal demand – An operations research case study," Applied Energy, Elsevier, vol. 143(C), pages 348-358.
  • Handle: RePEc:eee:appene:v:143:y:2015:i:c:p:348-358
    DOI: 10.1016/j.apenergy.2015.01.034

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    2. Schmidt, J. & Schönhart, M. & Biberacher, M. & Guggenberger, T. & Hausl, S. & Kalt, G. & Leduc, S. & Schardinger, I. & Schmid, E., 2012. "Regional energy autarky: Potentials, costs and consequences for an Austrian region," Energy Policy, Elsevier, vol. 47(C), pages 211-221.
    3. Leduc, S. & Starfelt, F. & Dotzauer, E. & Kindermann, G. & McCallum, I. & Obersteiner, M. & Lundgren, J., 2010. "Optimal location of lignocellulosic ethanol refineries with polygeneration in Sweden," Energy, Elsevier, vol. 35(6), pages 2709-2716.
    4. Börjesson, Martin & Ahlgren, Erik O., 2012. "Cost-effective biogas utilisation – A modelling assessment of gas infrastructural options in a regional energy system," Energy, Elsevier, vol. 48(1), pages 212-226.
    5. Bekkering, J. & Broekhuis, A.A. & van Gemert, W.J.T. & Hengeveld, E.J., 2013. "Balancing gas supply and demand with a sustainable gas supply chain – A study based on field data," Applied Energy, Elsevier, vol. 111(C), pages 842-852.
    6. Rentizelas, Athanasios A. & Tatsiopoulos, Ilias P., 2010. "Locating a bioenergy facility using a hybrid optimization method," International Journal of Production Economics, Elsevier, vol. 123(1), pages 196-209, January.
    7. van der Hilst, F. & Dornburg, V. & Sanders, J.P.M. & Elbersen, B. & Graves, A. & Turkenburg, W.C. & Elbersen, H.W. & van Dam, J.M.C. & Faaij, A.P.C., 2010. "Potential, spatial distribution and economic performance of regional biomass chains: The North of the Netherlands as example," Agricultural Systems, Elsevier, vol. 103(7), pages 403-417, September.
    8. Beck, Jessica & Kempener, Ruud & Cohen, Brett & Petrie, Jim, 2008. "A complex systems approach to planning, optimization and decision making for energy networks," Energy Policy, Elsevier, vol. 36(8), pages 2803-2813, August.
    9. Ren, Hongbo & Zhou, Weisheng & Nakagami, Ken'ichi & Gao, Weijun & Wu, Qiong, 2010. "Multi-objective optimization for the operation of distributed energy systems considering economic and environmental aspects," Applied Energy, Elsevier, vol. 87(12), pages 3642-3651, December.
    10. Velazquez-Marti, B. & Fernandez-Gonzalez, E., 2010. "Mathematical algorithms to locate factories to transform biomass in bioenergy focused on logistic network construction," Renewable Energy, Elsevier, vol. 35(9), pages 2136-2142.
    11. Müller, Matthias Otto & Stämpfli, Adrian & Dold, Ursula & Hammer, Thomas, 2011. "Energy autarky: A conceptual framework for sustainable regional development," Energy Policy, Elsevier, vol. 39(10), pages 5800-5810, October.
    12. Höhn, J. & Lehtonen, E. & Rasi, S. & Rintala, J., 2014. "A Geographical Information System (GIS) based methodology for determination of potential biomasses and sites for biogas plants in southern Finland," Applied Energy, Elsevier, vol. 113(C), pages 1-10.
    13. Balaman, Şebnem Yılmaz & Selim, Hasan, 2014. "A network design model for biomass to energy supply chains with anaerobic digestion systems," Applied Energy, Elsevier, vol. 130(C), pages 289-304.
    14. Kocoloski, Matt & Michael Griffin, W. & Scott Matthews, H., 2011. "Impacts of facility size and location decisions on ethanol production cost," Energy Policy, Elsevier, vol. 39(1), pages 47-56, January.
    15. Hahn, Henning & Krautkremer, Bernd & Hartmann, Kilian & Wachendorf, Michael, 2014. "Review of concepts for a demand-driven biogas supply for flexible power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 383-393.
    16. Leduc, S. & Lundgren, J. & Franklin, O. & Dotzauer, E., 2010. "Location of a biomass based methanol production plant: A dynamic problem in northern Sweden," Applied Energy, Elsevier, vol. 87(1), pages 68-75, January.
    17. Uhlemair, Harald & Karschin, Ingo & Geldermann, Jutta, 2014. "Optimizing the production and distribution system of bioenergy villages," International Journal of Production Economics, Elsevier, vol. 147(PA), pages 62-72.
    18. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
    19. Broekmeulen, Rob A. C. M. & van Weert, Arjen & Saedt, Anton P. H., 2002. "Comparing three alternative optimisation methods for the treatment planning of bulbs," Agricultural Systems, Elsevier, vol. 72(1), pages 59-71, April.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Howlader, Harun Or Rashid & Matayoshi, Hidehito & Senjyu, Tomonobu, 2016. "Distributed generation integrated with thermal unit commitment considering demand response for energy storage optimization of smart grid," Renewable Energy, Elsevier, vol. 99(C), pages 107-117.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:143:y:2015:i:c:p:348-358. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Dana Niculescu). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.