IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v312y2024i2p556-572.html
   My bibliography  Save this article

Multi-period distribution networks with purchase commitment contracts

Author

Listed:
  • Clavijo López, Christian
  • Crama, Yves
  • Pironet, Thierry
  • Semet, Frédéric

Abstract

Retailers which deliver products directly to their customer locations often rely on Logistics Service Intermediaries (LSI) for order management, warehousing, transportation and distribution services. Usually, the LSI acts as a shipper and subcontracts the transportation to carriers for long-haul and last-mile delivery services. All agents interact and are connected through cross-docking facilities. As the demand from customers may vary significantly over time, the shipper’s requirements for transportation evolve accordingly at the tactical level. This creates opportunities for the shipper to take advantage of medium-term contracts with the carriers at prices lower than those offered by the spot market. The study focuses on the tactical design, through dynamic contracts, of a suitable network of cross-docking facilities and related transportation capacities (belonging to different carriers) to reduce the shipper’s operational costs. In this article, we propose an MILP formulation for the multi-period planning problem with minimum purchase commitment contracts faced by the shipper. We propose exact and heuristic decomposition methods for the the model, respectively, based on combinatorial Benders cuts and on relax-and-repair approaches. The performance of these algorithms is experimentally compared to that of commercial solvers (branch-and-cut and classical Benders). The numerical results show that our methods perform comparatively well for the solution of large size instances and brings economic benefits to the shipper.

Suggested Citation

  • Clavijo López, Christian & Crama, Yves & Pironet, Thierry & Semet, Frédéric, 2024. "Multi-period distribution networks with purchase commitment contracts," European Journal of Operational Research, Elsevier, vol. 312(2), pages 556-572.
  • Handle: RePEc:eee:ejores:v:312:y:2024:i:2:p:556-572
    DOI: 10.1016/j.ejor.2023.07.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221723005453
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2023.07.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lindsey, Christopher & Mahmassani, Hani S., 2017. "Sourcing truckload capacity in the transportation spot market: A framework for third party providers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 261-273.
    2. Gérard P. Cachon & Martin A. Lariviere, 2001. "Contracting to Assure Supply: How to Share Demand Forecasts in a Supply Chain," Management Science, INFORMS, vol. 47(5), pages 629-646, May.
    3. Gendron, Bernard & Scutellà, Maria Grazia & Garroppo, Rosario G. & Nencioni, Gianfranco & Tavanti, Luca, 2016. "A branch-and-Benders-cut method for nonlinear power design in green wireless local area networks," European Journal of Operational Research, Elsevier, vol. 255(1), pages 151-162.
    4. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    5. Lai, Kee-hung, 2004. "Service capability and performance of logistics service providers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 40(5), pages 385-399, September.
    6. Charles J. Corbett & Deming Zhou & Christopher S. Tang, 2004. "Designing Supply Contracts: Contract Type and Information Asymmetry," Management Science, INFORMS, vol. 50(4), pages 550-559, April.
    7. Akbalik, Ayse & Hadj-Alouane, Atidel B. & Sauer, Nathalie & Ghribi, Houcem, 2017. "NP-hard and polynomial cases for the single-item lot sizing problem with batch ordering under capacity reservation contract," European Journal of Operational Research, Elsevier, vol. 257(2), pages 483-493.
    8. A. A. Tsay & W. S. Lovejoy, 1999. "Quantity Flexibility Contracts and Supply Chain Performance," Manufacturing & Service Operations Management, INFORMS, vol. 1(2), pages 89-111.
    9. Jin, Mingzhou & David Wu, S., 2007. "Capacity reservation contracts for high-tech industry," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1659-1677, February.
    10. Andrew Lim & Fan Wang & Zhou Xu, 2006. "A Transportation Problem with Minimum Quantity Commitment," Transportation Science, INFORMS, vol. 40(1), pages 117-129, February.
    11. VAN ROY, Tony J. & ERLENKOTTER, Donald, 1982. "A dual-based procedure for dynamic facility location," LIDAM Reprints CORE 490, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    12. Quentin Botton & Bernard Fortz & Luis Gouveia & Michael Poss, 2013. "Benders Decomposition for the Hop-Constrained Survivable Network Design Problem," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 13-26, February.
    13. Brusset, Xavier, 2009. "Choosing a transport contract over multiple periods," MPRA Paper 18392, University Library of Munich, Germany, revised 09 Jan 2009.
    14. Abdulkader S. Hanbazazah & Luis E. Abril & Nazrul I. Shaikh & Murat Erkoc, 2018. "A Redesigned Benders Decomposition Approach for Large-Scale In-Transit Freight Consolidation Operations," International Journal of Information Systems and Supply Chain Management (IJISSCM), IGI Global, vol. 11(2), pages 1-15, April.
    15. Owen, Susan Hesse & Daskin, Mark S., 1998. "Strategic facility location: A review," European Journal of Operational Research, Elsevier, vol. 111(3), pages 423-447, December.
    16. Spinler, Stefan & Huchzermeier, Arnd, 2006. "The valuation of options on capacity with cost and demand uncertainty," European Journal of Operational Research, Elsevier, vol. 171(3), pages 915-934, June.
    17. Gianni Codato & Matteo Fischetti, 2006. "Combinatorial Benders' Cuts for Mixed-Integer Linear Programming," Operations Research, INFORMS, vol. 54(4), pages 756-766, August.
    18. Pimentel, Bruno S. & Mateus, Geraldo R. & Almeida, Franklin A., 2013. "Stochastic capacity planning and dynamic network design," International Journal of Production Economics, Elsevier, vol. 145(1), pages 139-149.
    19. Zvi Drezner & G. O. Wesolowsky, 1991. "Facility location when demand is time dependent," Naval Research Logistics (NRL), John Wiley & Sons, vol. 38(5), pages 763-777, October.
    20. Sanjay Dominik Jena & Jean-François Cordeau & Bernard Gendron, 2015. "Dynamic Facility Location with Generalized Modular Capacities," Transportation Science, INFORMS, vol. 49(3), pages 484-499, August.
    21. G. Guastaroba & M. G. Speranza & D. Vigo, 2016. "Intermediate Facilities in Freight Transportation Planning: A Survey," Transportation Science, INFORMS, vol. 50(3), pages 763-789, August.
    22. Song, Jiongjiong & Regan, Amelia, 2005. "Approximation algorithms for the bid construction problem in combinatorial auctions for the procurement of freight transportation contracts," Transportation Research Part B: Methodological, Elsevier, vol. 39(10), pages 914-933, December.
    23. Hanbazazah, Abdulkader S. & Abril, Luis & Erkoc, Murat & Shaikh, Nazrul, 2019. "Freight consolidation with divisible shipments, delivery time windows, and piecewise transportation costs," European Journal of Operational Research, Elsevier, vol. 276(1), pages 187-201.
    24. Kuyzu, Gültekin & Akyol, Çağla Gül & Ergun, Özlem & Savelsbergh, Martin, 2015. "Bid price optimization for truckload carriers in simultaneous transportation procurement auctions," Transportation Research Part B: Methodological, Elsevier, vol. 73(C), pages 34-58.
    25. Tony J. Van Roy & Donald Erlenkotter, 1982. "A Dual-Based Procedure for Dynamic Facility Location," Management Science, INFORMS, vol. 28(10), pages 1091-1105, October.
    26. Ben Mohamed, Imen & Klibi, Walid & Vanderbeck, François, 2020. "Designing a two-echelon distribution network under demand uncertainty," European Journal of Operational Research, Elsevier, vol. 280(1), pages 102-123.
    27. Heydari, Jafar & Govindan, Kannan & Ebrahimi Nasab, Hamid Reza & Taleizadeh, Ata Allah, 2020. "Coordination by quantity flexibility contract in a two-echelon supply chain system: Effect of outsourcing decisions," International Journal of Production Economics, Elsevier, vol. 225(C).
    28. Chen, Frank Y. & Hum, S. H. & Sun, J., 2001. "Analysis of third-party warehousing contracts with commitments," European Journal of Operational Research, Elsevier, vol. 131(3), pages 603-610, June.
    29. Lian, Zhaotong & Deshmukh, Abhijit, 2009. "Analysis of supply contracts with quantity flexibility," European Journal of Operational Research, Elsevier, vol. 196(2), pages 526-533, July.
    30. Chen, Frank Y. & Krass, Dmitry, 2001. "Analysis of supply contracts with minimum total order quantity commitments and non-stationary demands," European Journal of Operational Research, Elsevier, vol. 131(2), pages 309-323, June.
    31. Rahmaniani, Ragheb & Crainic, Teodor Gabriel & Gendreau, Michel & Rei, Walter, 2017. "The Benders decomposition algorithm: A literature review," European Journal of Operational Research, Elsevier, vol. 259(3), pages 801-817.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Ying & Gupta, Sudheer, 2011. "Strategic capability investments and competition for supply contracts," European Journal of Operational Research, Elsevier, vol. 214(2), pages 273-283, October.
    2. Allman, Andrew & Zhang, Qi, 2020. "Dynamic location of modular manufacturing facilities with relocation of individual modules," European Journal of Operational Research, Elsevier, vol. 286(2), pages 494-507.
    3. Silva, Allyson & Aloise, Daniel & Coelho, Leandro C. & Rocha, Caroline, 2021. "Heuristics for the dynamic facility location problem with modular capacities," European Journal of Operational Research, Elsevier, vol. 290(2), pages 435-452.
    4. Güden, Hüseyin & Süral, Haldun, 2014. "Locating mobile facilities in railway construction management," Omega, Elsevier, vol. 45(C), pages 71-79.
    5. Brusset, Xavier, 2009. "Choosing a transport contract over multiple periods," MPRA Paper 18392, University Library of Munich, Germany, revised 09 Jan 2009.
    6. Sanjay Dominik Jena & Jean-François Cordeau & Bernard Gendron, 2015. "Dynamic Facility Location with Generalized Modular Capacities," Transportation Science, INFORMS, vol. 49(3), pages 484-499, August.
    7. Ben Mohamed, Imen & Klibi, Walid & Sadykov, Ruslan & Şen, Halil & Vanderbeck, François, 2023. "The two-echelon stochastic multi-period capacitated location-routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 645-667.
    8. Pereira, Daniel Filipe & Oliveira, José Fernando & Carravilla, Maria Antónia, 2023. "Design of a sales plan in a hybrid contractual and non-contractual context in a setting of limited capacity: A robust approach," International Journal of Production Economics, Elsevier, vol. 260(C).
    9. Onur Kaya & Serra Caner, 2018. "Supply chain contracts for capacity decisions under symmetric and asymmetric information," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(1), pages 67-92, March.
    10. Mestre, Ana Maria & Oliveira, Mónica Duarte & Barbosa-Póvoa, Ana Paula, 2015. "Location–allocation approaches for hospital network planning under uncertainty," European Journal of Operational Research, Elsevier, vol. 240(3), pages 791-806.
    11. Tang, Lianhua & Li, Yantong & Bai, Danyu & Liu, Tao & Coelho, Leandro C., 2022. "Bi-objective optimization for a multi-period COVID-19 vaccination planning problem," Omega, Elsevier, vol. 110(C).
    12. Correia, Isabel & Melo, Teresa, 2016. "A computational comparison of formulations for a multi-period facility location problem with modular capacity adjustments and flexible demand fulfillment," Technical Reports on Logistics of the Saarland Business School 11, Saarland University of Applied Sciences (htw saar), Saarland Business School.
    13. Maher, Stephen J., 2021. "Implementing the branch-and-cut approach for a general purpose Benders’ decomposition framework," European Journal of Operational Research, Elsevier, vol. 290(2), pages 479-498.
    14. Cai, Wenbo & Abdel-Malek, Layek & Hoseini, Babak & Rajaei Dehkordi, Sharareh, 2015. "Impact of flexible contracts on the performance of both retailer and supplier," International Journal of Production Economics, Elsevier, vol. 170(PB), pages 429-444.
    15. Drexl, Andreas & Klose, Andreas, 2001. "Facility location models for distribution system design," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 546, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    16. Rodríguez, Jesús A. & Anjos, Miguel F. & Côté, Pascal & Desaulniers, Guy, 2021. "Accelerating Benders decomposition for short-term hydropower maintenance scheduling," European Journal of Operational Research, Elsevier, vol. 289(1), pages 240-253.
    17. Mathur, Puneet Prakash & Shah, Janat, 2008. "Supply chain contracts with capacity investment decision: Two-way penalties for coordination," International Journal of Production Economics, Elsevier, vol. 114(1), pages 56-70, July.
    18. Guo, Penghui & Zhu, Jianjun, 2023. "Capacity reservation for humanitarian relief: A logic-based Benders decomposition method with subgradient cut," European Journal of Operational Research, Elsevier, vol. 311(3), pages 942-970.
    19. Reza Farahani & Zvi Drezner & Nasrin Asgari, 2009. "Single facility location and relocation problem with time dependent weights and discrete planning horizon," Annals of Operations Research, Springer, vol. 167(1), pages 353-368, March.
    20. Zhao, Yingxue & Ma, Lijun & Xie, Gang & Cheng, T.C.E., 2013. "Coordination of supply chains with bidirectional option contracts," European Journal of Operational Research, Elsevier, vol. 229(2), pages 375-381.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:312:y:2024:i:2:p:556-572. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.