IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v118y2018icp291-297.html
   My bibliography  Save this article

A greener gas grid: What are the options

Author

Listed:
  • Speirs, Jamie
  • Balcombe, Paul
  • Johnson, Erin
  • Martin, Jeanne
  • Brandon, Nigel
  • Hawkes, Adam

Abstract

There is an ongoing debate over future decarbonisation of gas networks using biomethane, and increasingly hydrogen, in gas network infrastructure. Some emerging research presents gas network decarbonisation options as a tractable alternative to ‘all-electric’ scenarios that use electric appliances to deliver the traditional gas services such as heating and cooking. However, there is some uncertainty as to the technical feasibility, cost and carbon emissions of gas network decarbonisation options. In response to this debate the Sustainable Gas Institute at Imperial College London has conducted a rigorous systematic review of the evidence surrounding gas network decarbonisation options. The study focuses on the technologies used to generate biomethane and hydrogen, and examines the technical potentials, economic costs and emissions associated with the full supply chains involved. The following summarises the main findings of this research. The report concludes that there are a number of options that could significantly decarbonise the gas network, and doing so would provide energy system flexibility utilising existing assets. However, these options will be more expensive than the existing gas system, and the GHG intensity of these options may vary significantly. In addition, more research is required, particularly in relation to the capabilities of existing pipework to transport hydrogen safely.

Suggested Citation

  • Speirs, Jamie & Balcombe, Paul & Johnson, Erin & Martin, Jeanne & Brandon, Nigel & Hawkes, Adam, 2018. "A greener gas grid: What are the options," Energy Policy, Elsevier, vol. 118(C), pages 291-297.
  • Handle: RePEc:eee:enepol:v:118:y:2018:i:c:p:291-297
    DOI: 10.1016/j.enpol.2018.03.069
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518302027
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bekkering, J. & Hengeveld, E.J. & van Gemert, W.J.T. & Broekhuis, A.A., 2015. "Designing a green gas supply to meet regional seasonal demand – An operations research case study," Applied Energy, Elsevier, vol. 143(C), pages 348-358.
    2. Martin D. D. Evans & Richard K. Lyons, 2017. "Understanding Order Flow," World Scientific Book Chapters, in: Studies in Foreign Exchange Economics, chapter 13, pages 507-546, World Scientific Publishing Co. Pte. Ltd..
    3. Dodds, Paul E. & McDowall, Will, 2013. "The future of the UK gas network," Energy Policy, Elsevier, vol. 60(C), pages 305-316.
    4. Kothari, Richa & Buddhi, D. & Sawhney, R.L., 2008. "Comparison of environmental and economic aspects of various hydrogen production methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 553-563, February.
    5. Caumon, Pauline & Lopez-Botet Zulueta, Miguel & Louyrette, Jérémy & Albou, Sandrine & Bourasseau, Cyril & Mansilla, Christine, 2015. "Flexible hydrogen production implementation in the French power system: Expected impacts at the French and European levels," Energy, Elsevier, vol. 81(C), pages 556-562.
    6. Åhman, Max, 2010. "Biomethane in the transport sector--An appraisal of the forgotten option," Energy Policy, Elsevier, vol. 38(1), pages 208-217, January.
    7. Hu, Zhigang & Lin, Gege & Sun, Taian & Hou, Haiyan, 2017. "Understanding multiply mentioned references," Journal of Informetrics, Elsevier, vol. 11(4), pages 948-958.
    8. Whiting, Andrew & Azapagic, Adisa, 2014. "Life cycle environmental impacts of generating electricity and heat from biogas produced by anaerobic digestion," Energy, Elsevier, vol. 70(C), pages 181-193.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Then & Patrick Hein & Tanja M. Kneiske & Martin Braun, 2020. "Analysis of Dependencies between Gas and Electricity Distribution Grid Planning and Building Energy Retrofit Decisions," Sustainability, MDPI, Open Access Journal, vol. 12(13), pages 1-44, July.
    2. Singlitico, Alessandro & Goggins, Jamie & Monaghan, Rory F.D., 2019. "The role of life cycle assessment in the sustainable transition to a decarbonised gas network through green gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 16-28.
    3. Daniel Then & Christian Spalthoff & Johannes Bauer & Tanja M. Kneiske & Martin Braun, 2020. "Impact of Natural Gas Distribution Network Structure and Operator Strategies on Grid Economy in Face of Decreasing Demand," Energies, MDPI, Open Access Journal, vol. 13(3), pages 1-33, February.
    4. de Vries, Harmen & Levinsky, Howard B., 2020. "Flashback, burning velocities and hydrogen admixture: Domestic appliance approval, gas regulation and appliance development," Applied Energy, Elsevier, vol. 259(C).
    5. Peng Fu & Danny Pudjianto & Xi Zhang & Goran Strbac, 2020. "Integration of Hydrogen into Multi-Energy Systems Optimisation," Energies, MDPI, Open Access Journal, vol. 13(7), pages 1-19, April.
    6. Langshaw, Liam & Ainalis, Daniel & Acha, Salvador & Shah, Nilay & Stettler, Marc E.J., 2020. "Environmental and economic analysis of liquefied natural gas (LNG) for heavy goods vehicles in the UK: A Well-to-Wheel and total cost of ownership evaluation," Energy Policy, Elsevier, vol. 137(C).
    7. Broad, Oliver & Hawker, Graeme & Dodds, Paul E., 2020. "Decarbonising the UK residential sector: The dependence of national abatement on flexible and local views of the future," Energy Policy, Elsevier, vol. 140(C).

    More about this item

    Keywords

    Hydrogen; Biomethane; Gas network; Emissions; Cost;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:118:y:2018:i:c:p:291-297. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Haili He). General contact details of provider: http://www.elsevier.com/locate/enpol .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.