IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v113y2014icp1586-1595.html
   My bibliography  Save this article

The impact of scheduling appliances and rate structure on bill savings for net-zero energy communities: Application to West Village

Author

Listed:
  • Gaiser, Kyle
  • Stroeve, Pieter

Abstract

This paper investigates the financial incentives of load shifting under a time-of-use rate and Net Energy Metering pertaining to the solar net-zero energy apartment community, West Village in Davis, California. By “smart-scheduling” the electricity and domestic hot water demand of the dishwasher, clothes washer, dryer, sinks and showers solely to off-peak periods, the peak demand is reduced by 18%, the part-peak demand by 32% and the off-peak demand increased by 12%. With this shifted schedule customers accrue twice as many credits as they would receive under a non-shifted schedule with the same time-of-use rate, totaling to $2975 of “free” electricity per year for one 12unit building. But, under current rates smart-scheduling is found to be worthwhile only during the months from May through October, when 96% of the credits are accumulated. If the rate schedule is altered to include peak-periods during the winter months, the credit savings will double again in value. These comparisons are prepared using two photovoltaic simulation programs (PolySun by Vela Solaris and System Advisory Model by the National Renewable Energy Laboratory) and for apartments using an electric heater and a heat pump for domestic hot water. By quantifying these savings, PV generating customers are informed that a time-of-use rate can benefit them significantly, especially if the surplus generation is maximized and sold to the grid during peak day time hours. With this information, housing developers can create effective incentives for residents, and utility companies, policy makers and designers of smart-scheduling household appliances can encourage a more reliable, clean and economical national grid.

Suggested Citation

  • Gaiser, Kyle & Stroeve, Pieter, 2014. "The impact of scheduling appliances and rate structure on bill savings for net-zero energy communities: Application to West Village," Applied Energy, Elsevier, vol. 113(C), pages 1586-1595.
  • Handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1586-1595
    DOI: 10.1016/j.apenergy.2013.08.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261913007198
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2013.08.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kwan, Calvin Lee & Kwan, Timothy J., 2011. "The financials of constructing a solar PV for net-zero energy operations on college campuses," Utilities Policy, Elsevier, vol. 19(4), pages 226-234.
    2. Attia, Shady & Evrard, Arnaud & Gratia, Elisabeth, 2012. "Development of benchmark models for the Egyptian residential buildings sector," Applied Energy, Elsevier, vol. 94(C), pages 270-284.
    3. Friedman, Lee S., 2011. "The importance of marginal cost electricity pricing to the success of greenhouse gas reduction programs," Energy Policy, Elsevier, vol. 39(11), pages 7347-7360.
    4. Piacentino, Antonio & Barbaro, Chiara, 2013. "A comprehensive tool for efficient design and operation of polygeneration-based energy μgrids serving a cluster of buildings. Part II: Analysis of the applicative potential," Applied Energy, Elsevier, vol. 111(C), pages 1222-1238.
    5. Marinakis, Vangelis & Doukas, Haris & Karakosta, Charikleia & Psarras, John, 2013. "An integrated system for buildings’ energy-efficient automation: Application in the tertiary sector," Applied Energy, Elsevier, vol. 101(C), pages 6-14.
    6. McKenna, Eoghan & McManus, Marcelle & Cooper, Sam & Thomson, Murray, 2013. "Economic and environmental impact of lead-acid batteries in grid-connected domestic PV systems," Applied Energy, Elsevier, vol. 104(C), pages 239-249.
    7. Mills, Andrew & Wiser, Ryan & Barbose, Galen & Golove, William, 2008. "The impact of retail rate structures on the economics of commercial photovoltaic systems in California," Energy Policy, Elsevier, vol. 36(9), pages 3266-3277, September.
    8. Manfren, Massimiliano & Caputo, Paola & Costa, Gaia, 2011. "Paradigm shift in urban energy systems through distributed generation: Methods and models," Applied Energy, Elsevier, vol. 88(4), pages 1032-1048, April.
    9. Faruqui, Ahmad & George, Stephen, 2005. "Quantifying Customer Response to Dynamic Pricing," The Electricity Journal, Elsevier, vol. 18(4), pages 53-63, May.
    10. Darghouth, Naïm R. & Barbose, Galen & Wiser, Ryan, 2011. "The impact of rate design and net metering on the bill savings from distributed PV for residential customers in California," Energy Policy, Elsevier, vol. 39(9), pages 5243-5253, September.
    11. Mostafa Baladi, S. & Herriges, Joseph A. & Sweeney, Thomas J., 1998. "Residential response to voluntary time-of-use electricity rates," Resource and Energy Economics, Elsevier, vol. 20(3), pages 225-244, September.
    12. Fiaschi, Daniele & Bandinelli, Romeo & Conti, Silvia, 2012. "A case study for energy issues of public buildings and utilities in a small municipality: Investigation of possible improvements and integration with renewables," Applied Energy, Elsevier, vol. 97(C), pages 101-114.
    13. Piacentino, Antonio & Barbaro, Chiara & Cardona, Fabio & Gallea, Roberto & Cardona, Ennio, 2013. "A comprehensive tool for efficient design and operation of polygeneration-based energy μgrids serving a cluster of buildings. Part I: Description of the method," Applied Energy, Elsevier, vol. 111(C), pages 1204-1221.
    14. Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jordi de la Hoz & Àlex Alonso & Sergio Coronas & Helena Martín & José Matas, 2020. "Impact of Different Regulatory Structures on the Management of Energy Communities," Energies, MDPI, vol. 13(11), pages 1-26, June.
    2. Villa-Arrieta, Manuel & Sumper, Andreas, 2019. "Economic evaluation of Nearly Zero Energy Cities," Applied Energy, Elsevier, vol. 237(C), pages 404-416.
    3. Charani Shandiz, Saeid & Rismanchi, Behzad & Foliente, Greg, 2021. "Energy master planning for net-zero emission communities: State of the art and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Damilola A. Asaleye & Michael Breen & Michael D. Murphy, 2017. "A Decision Support Tool for Building Integrated Renewable Energy Microgrids Connected to a Smart Grid," Energies, MDPI, vol. 10(11), pages 1-29, November.
    5. Wong, Pui Ting & Rau, Henrike, 2023. "Time of Use tariffs, childcare and everyday temporalities in the US and China: Evidence from time-use and sequence-network analysis," Energy Policy, Elsevier, vol. 172(C).
    6. Klaassen, E.A.M. & Kobus, C.B.A. & Frunt, J. & Slootweg, J.G., 2016. "Responsiveness of residential electricity demand to dynamic tariffs: Experiences from a large field test in the Netherlands," Applied Energy, Elsevier, vol. 183(C), pages 1065-1074.
    7. Ren, Zhengen & Grozev, George & Higgins, Andrew, 2016. "Modelling impact of PV battery systems on energy consumption and bill savings of Australian houses under alternative tariff structures," Renewable Energy, Elsevier, vol. 89(C), pages 317-330.
    8. Haleh Moghaddasi & Charles Culp & Jorge Vanegas, 2021. "Net Zero Energy Communities: Integrated Power System, Building and Transport Sectors," Energies, MDPI, vol. 14(21), pages 1-33, October.
    9. Di Giorgio, Alessandro & Liberati, Francesco, 2014. "Near real time load shifting control for residential electricity prosumers under designed and market indexed pricing models," Applied Energy, Elsevier, vol. 128(C), pages 119-132.
    10. Fernández, David & Pozo, Carlos & Folgado, Rubén & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano, 2017. "Multiperiod model for the optimal production planning in the industrial gases sector," Applied Energy, Elsevier, vol. 206(C), pages 667-682.
    11. Cominola, A. & Giuliani, M. & Piga, D. & Castelletti, A. & Rizzoli, A.E., 2017. "A Hybrid Signature-based Iterative Disaggregation algorithm for Non-Intrusive Load Monitoring," Applied Energy, Elsevier, vol. 185(P1), pages 331-344.
    12. Tian, Shuai & Lu, Yuxin & Zhou, Xin & Zhang, Lun & An, Jingjing & Yan, Da & Shi, Xing & Jin, Xing, 2023. "A new perspective of solar hot water system operation optimization: Supply and demand matching," Renewable Energy, Elsevier, vol. 207(C), pages 89-104.
    13. Kobus, Charlotte B.A. & Klaassen, Elke A.M. & Mugge, Ruth & Schoormans, Jan P.L., 2015. "A real-life assessment on the effect of smart appliances for shifting households’ electricity demand," Applied Energy, Elsevier, vol. 147(C), pages 335-343.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ren, Zhengen & Grozev, George & Higgins, Andrew, 2016. "Modelling impact of PV battery systems on energy consumption and bill savings of Australian houses under alternative tariff structures," Renewable Energy, Elsevier, vol. 89(C), pages 317-330.
    2. Seel, Joachim & Barbose, Galen L. & Wiser, Ryan H., 2014. "An analysis of residential PV system price differences between the United States and Germany," Energy Policy, Elsevier, vol. 69(C), pages 216-226.
    3. Calise, Francesco & Cipollina, Andrea & Dentice d’Accadia, Massimo & Piacentino, Antonio, 2014. "A novel renewable polygeneration system for a small Mediterranean volcanic island for the combined production of energy and water: Dynamic simulation and economic assessment," Applied Energy, Elsevier, vol. 135(C), pages 675-693.
    4. Yokoyama, Ryohei & Tokunaga, Akira & Wakui, Tetsuya, 2018. "Robust optimal design of energy supply systems under uncertain energy demands based on a mixed-integer linear model," Energy, Elsevier, vol. 153(C), pages 159-169.
    5. Pietro Catrini & Tancredi Testasecca & Alessandro Buscemi & Antonio Piacentino, 2022. "Exergoeconomics as a Cost-Accounting Method in Thermal Grids with the Presence of Renewable Energy Producers," Sustainability, MDPI, vol. 14(7), pages 1-27, March.
    6. Darghouth, Naïm R. & Barbose, Galen & Wiser, Ryan H., 2014. "Customer-economics of residential photovoltaic systems (Part 1): The impact of high renewable energy penetrations on electricity bill savings with net metering," Energy Policy, Elsevier, vol. 67(C), pages 290-300.
    7. Torgeir Ericson, 2006. "Time-differentiated pricing and direct load control of residential electricity consumption," Discussion Papers 461, Statistics Norway, Research Department.
    8. Sara Ghaem Sigarchian & Anders Malmquist & Viktoria Martin, 2018. "Design Optimization of a Small-Scale Polygeneration Energy System in Different Climate Zones in Iran," Energies, MDPI, vol. 11(5), pages 1-19, May.
    9. Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Borge-Diez, David & Collado-Fernández, Eduardo, 2016. "Evaluation of the cost of using power plant reject heat in low-temperature district heating and cooling networks," Applied Energy, Elsevier, vol. 162(C), pages 892-907.
    10. Francesco Calise & Massimo Dentice d’Accadia & Maria Vicidomini, 2022. "Integrated Solar Thermal Systems," Energies, MDPI, vol. 15(10), pages 1-8, May.
    11. Nyholm, Emil & Odenberger, Mikael & Johnsson, Filip, 2017. "An economic assessment of distributed solar PV generation in Sweden from a consumer perspective – The impact of demand response," Renewable Energy, Elsevier, vol. 108(C), pages 169-178.
    12. Georgios C. Christoforidis & Ioannis P. Panapakidis & Theofilos A. Papadopoulos & Grigoris K. Papagiannis & Ioannis Koumparou & Maria Hadjipanayi & George E. Georghiou, 2016. "A Model for the Assessment of Different Net-Metering Policies," Energies, MDPI, vol. 9(4), pages 1-24, April.
    13. Darghouth, Naïm R. & Wiser, Ryan H. & Barbose, Galen & Mills, Andrew D., 2016. "Net metering and market feedback loops: Exploring the impact of retail rate design on distributed PV deployment," Applied Energy, Elsevier, vol. 162(C), pages 713-722.
    14. Takanori Ida & Wenjie Wang, 2014. "A Field Experiment on Dynamic Electricity Pricing in Los Alamos:Opt-in Versus Opt-out," Discussion papers e-14-010, Graduate School of Economics Project Center, Kyoto University.
    15. Daniele Testi & Paolo Conti & Eva Schito & Luca Urbanucci & Francesco D’Ettorre, 2019. "Synthesis and Optimal Operation of Smart Microgrids Serving a Cluster of Buildings on a Campus with Centralized and Distributed Hybrid Renewable Energy Units," Energies, MDPI, vol. 12(4), pages 1-17, February.
    16. Chesser, Michael & Hanly, Jim & Cassells, Damien & Apergis, Nicholas, 2018. "The positive feedback cycle in the electricity market: Residential solar PV adoption, electricity demand and prices," Energy Policy, Elsevier, vol. 122(C), pages 36-44.
    17. Ericson, Torgeir, 2011. "Households' self-selection of dynamic electricity tariffs," Applied Energy, Elsevier, vol. 88(7), pages 2541-2547, July.
    18. Carlos J. Sarasa-Maestro & Rodolfo Dufo-López & José L. Bernal-Agustín, 2016. "Analysis of Photovoltaic Self-Consumption Systems," Energies, MDPI, vol. 9(9), pages 1-18, August.
    19. Yokoyama, Ryohei & Shinano, Yuji & Taniguchi, Syusuke & Wakui, Tetsuya, 2019. "Search for K-best solutions in optimal design of energy supply systems by an extended MILP hierarchical branch and bound method," Energy, Elsevier, vol. 184(C), pages 45-57.
    20. Nikolaidis, Alexandros I. & Milidonis, Andreas & Charalambous, Charalambos A., 2015. "Impact of fuel-dependent electricity retail charges on the value of net-metered PV applications in vertically integrated systems," Energy Policy, Elsevier, vol. 79(C), pages 150-160.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:113:y:2014:i:c:p:1586-1595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.