IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v392y2021ics0096300320306779.html
   My bibliography  Save this article

Generalized moment estimation for uncertain differential equations

Author

Listed:
  • Liu, Z.

Abstract

Parameter estimation is a critical problem for the uncertain differential equation to achieve its full potential. Based on the Liu process’s properties and the difference form of the uncertain differential equation, the existing method of moments is intuitive but sometimes has no solution. As a result, this method is invalid and alternative ways are needed to estimate unknown parameters in the uncertain differential equation. Motivated by this, this paper proposes the generalized moment estimation which is the optimal solution of a minimization problem. Generalized moment estimation is equivalent to moment estimation when moment estimation exists, and still works well when moment estimation is invalid. Numerical examples and an empirical analysis on the interest rate illustrate the rationality and superiority of the generalized moment estimation.

Suggested Citation

  • Liu, Z., 2021. "Generalized moment estimation for uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 392(C).
  • Handle: RePEc:eee:apmaco:v:392:y:2021:i:c:s0096300320306779
    DOI: 10.1016/j.amc.2020.125724
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300320306779
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2020.125724?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Xiangfeng & Ralescu, Dan A., 2015. "Adams method for solving uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 270(C), pages 993-1003.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Zhang, Yi & Gao, Jinwu & Huang, Zhiyong, 2017. "Hamming method for solving uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 313(C), pages 331-341.
    4. Kai Yao & Baoding Liu, 2020. "Parameter estimation in uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 19(1), pages 1-12, March.
    5. Chan, K C, et al, 1992. "An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    6. Xiangfeng Yang & Kai Yao, 2017. "Uncertain partial differential equation with application to heat conduction," Fuzzy Optimization and Decision Making, Springer, vol. 16(3), pages 379-403, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tingqing Ye & Baoding Liu, 2022. "Uncertain hypothesis test with application to uncertain regression analysis," Fuzzy Optimization and Decision Making, Springer, vol. 21(2), pages 157-174, June.
    2. Shen, Jiayu & Shi, Jianxin & Gao, Lingceng & Zhang, Qiang & Zhu, Kai, 2023. "Uncertain green product supply chain with government intervention," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 136-156.
    3. Liu, Z. & Yang, Y., 2021. "Uncertain pharmacokinetic model based on uncertain differential equation," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    4. Lu, Jing & Yang, Xiangfeng & Tian, Miao, 2022. "Barrier swaption pricing formulae of mean-reverting model in uncertain environment," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    5. Wang, Weiwei & Ralescu, Dan A., 2021. "Valuation of lookback option under uncertain volatility model," Chaos, Solitons & Fractals, Elsevier, vol. 153(P1).
    6. Liu, Hanjie & Zhu, Yuanguo, 2024. "Carbon option pricing based on uncertain fractional differential equation: A binomial tree approach," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 225(C), pages 13-28.
    7. Liu, Zhe & Li, Xiaoyang & Kang, Rui, 2022. "Uncertain differential equation based accelerated degradation modeling," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    8. Zhang, Guidong & Sheng, Yuhong, 2022. "Estimating time-varying parameters in uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    9. Liu He & Yuanguo Zhu & Yajing Gu, 2023. "Nonparametric estimation for uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(4), pages 697-715, December.
    10. Noorani, Idin & Mehrdoust, Farshid, 2022. "Parameter estimation of uncertain differential equation by implementing an optimized artificial neural network," Chaos, Solitons & Fractals, Elsevier, vol. 165(P1).
    11. Meiling Jin & Fengming Liu & Yufu Ning & Yichang Gao & Dongmei Li, 2024. "A Mathematical Optimization Model Designed to Determine the Optimal Timing of Online Rumor Intervention Based on Uncertainty Theory," Mathematics, MDPI, vol. 12(16), pages 1-21, August.
    12. Tang, Han & Yang, Xiangfeng, 2022. "Moment estimation in uncertain differential equations based on the Milstein scheme," Applied Mathematics and Computation, Elsevier, vol. 418(C).
    13. He, Liu & Zhu, Yuanguo, 2024. "Nonparametric estimation for uncertain fractional differential equations," Chaos, Solitons & Fractals, Elsevier, vol. 178(C).
    14. Liu, Z. & Yang, Y., 2021. "Selection of uncertain differential equations using cross validation," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    15. Waichon Lio & Rui Kang, 2023. "Bayesian rule in the framework of uncertainty theory," Fuzzy Optimization and Decision Making, Springer, vol. 22(3), pages 337-358, September.
    16. Yang Liu & Baoding Liu, 2022. "Residual analysis and parameter estimation of uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 21(4), pages 513-530, December.
    17. Liu, Zhe & Yang, Ying, 2022. "Moment estimation for parameters in high-order uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    18. Farshid Mehrdoust & Idin Noorani & Wei Xu, 2023. "Uncertain energy model for electricity and gas futures with application in spark-spread option price," Fuzzy Optimization and Decision Making, Springer, vol. 22(1), pages 123-148, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Xiangfeng & Liu, Yuhan & Park, Gyei-Kark, 2020. "Parameter estimation of uncertain differential equation with application to financial market," Chaos, Solitons & Fractals, Elsevier, vol. 139(C).
    2. Liu, Z. & Yang, Y., 2021. "Uncertain pharmacokinetic model based on uncertain differential equation," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    3. Jian Zhou & Yujiao Jiang & Athanasios A. Pantelous & Weiwen Dai, 2023. "A systematic review of uncertainty theory with the use of scientometrical method," Fuzzy Optimization and Decision Making, Springer, vol. 22(3), pages 463-518, September.
    4. Liu, Z. & Yang, Y., 2021. "Selection of uncertain differential equations using cross validation," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    5. Jia, Lifen & Lio, Waichon & Yang, Xiangfeng, 2018. "Numerical method for solving uncertain spring vibration equation," Applied Mathematics and Computation, Elsevier, vol. 337(C), pages 428-441.
    6. Jia, Lifen & Chen, Wei, 2020. "Knock-in options of an uncertain stock model with floating interest rate," Chaos, Solitons & Fractals, Elsevier, vol. 141(C).
    7. Kai Yao & Baoding Liu, 2020. "Parameter estimation in uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 19(1), pages 1-12, March.
    8. Yang, Xiangfeng & Ralescu, Dan A., 2021. "A Dufort–Frankel scheme for one-dimensional uncertain heat equation," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 181(C), pages 98-112.
    9. Liu, Zhe & Yang, Ying, 2022. "Moment estimation for parameters in high-order uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 433(C).
    10. Lifen Jia & Wei Chen, 2021. "Uncertain SEIAR model for COVID-19 cases in China," Fuzzy Optimization and Decision Making, Springer, vol. 20(2), pages 243-259, June.
    11. Mahdavi, Mahnaz, 2008. "A comparison of international short-term rates under no arbitrage condition," Global Finance Journal, Elsevier, vol. 18(3), pages 303-318.
    12. Mark Trede & Bernd Wilfling, 2007. "Estimating exchange rate dynamics with diffusion processes: an application to Greek EMU data," Empirical Economics, Springer, vol. 33(1), pages 23-39, July.
    13. Christensen, T.M. & Hurn, A.S. & Lindsay, K.A., 2008. "The Devil is in the Detail: Hints for Practical Optimisation," Economic Analysis and Policy, Elsevier, vol. 38(2), pages 345-368, September.
    14. David K. Backus & Stanley E. Zin, 1994. "Reverse Engineering the Yield Curve," Working Papers 94-09, New York University, Leonard N. Stern School of Business, Department of Economics.
    15. Faff, Robert & Gray, Philip, 2006. "On the estimation and comparison of short-rate models using the generalised method of moments," Journal of Banking & Finance, Elsevier, vol. 30(11), pages 3131-3146, November.
    16. Isaac Kleshchelski & Nicolas Vincent, 2007. "Robust Equilibrium Yield Curves," Cahiers de recherche 08-02, HEC Montréal, Institut d'économie appliquée.
    17. Jianqing Fan, 2004. "A selective overview of nonparametric methods in financial econometrics," Papers math/0411034, arXiv.org.
    18. Hiraki, Takato & Takezawa, Nobuya, 1997. "How sensitive is short-term Japanese interest rate volatility to the level of the interest rate?," Economics Letters, Elsevier, vol. 56(3), pages 325-332, November.
    19. Ait-Sahalia, Yacine, 1996. "Nonparametric Pricing of Interest Rate Derivative Securities," Econometrica, Econometric Society, vol. 64(3), pages 527-560, May.
    20. Chen, Dan & Liu, Yang, 2023. "Uncertain Gordon-Schaefer model driven by Liu process," Applied Mathematics and Computation, Elsevier, vol. 450(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:392:y:2021:i:c:s0096300320306779. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.