IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v225y2022ics0951832022002770.html
   My bibliography  Save this article

Uncertain differential equation based accelerated degradation modeling

Author

Listed:
  • Liu, Zhe
  • Li, Xiaoyang
  • Kang, Rui

Abstract

Due to economic and technical reasons, in accelerated degradation testing (ADT) there are usually limited ADT data, which embody lots of epistemic uncertainties that cannot be depicted well by probability theory. Noting these facts, several uncertain processes based accelerated degradation models (UADMs) are proposed under the framework of uncertainty theory. However, these UADMs described uncertainties from a macro perspective which ignored the characteristic of performance degradation in small time scales and failed to describe the essence of nonlinear degradation. What is more, to estimate unknown parameters, these models used empirical distribution functions, which may have a great impact on the estimation results with limited samples. Motivated by these problems, based on uncertainty theory this paper builds up an uncertain differential equation based accelerated degradation model (UDEADM), which considers the dynamic cumulative change process of performance in small space–time scale, and explains the essence of nonlinear for uncertainties in degradation trend. Unknown parameters are estimated using uncertain generalized moment estimations. Furthermore, reliability and lifetime are analyzed under the normal operating condition based on belief reliability theory. A simulation study and a real data analysis are conducted to illustrate the effectiveness and advantages of the proposed methodology in details.

Suggested Citation

  • Liu, Zhe & Li, Xiaoyang & Kang, Rui, 2022. "Uncertain differential equation based accelerated degradation modeling," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
  • Handle: RePEc:eee:reensy:v:225:y:2022:i:c:s0951832022002770
    DOI: 10.1016/j.ress.2022.108641
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022002770
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108641?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zheng, Bokai & Chen, Cen & Lin, Yigang & Hu, Yifan & Ye, Xuerong & Zhai, Guofu & Zio, Enrico, 2022. "Optimal design of step-stress accelerated degradation test oriented by nonlinear and distributed degradation process," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Ma, Zhonghai & Liao, Haitao & Ji, Hui & Wang, Shaoping & Yin, Fanglong & Nie, Songlin, 2021. "Optimal design of hybrid accelerated test based on the Inverse Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    3. Le Liu & Xiao-Yang Li & Enrico Zio & Rui Kang & Tong-Min Jiang, 2017. "Model Uncertainty in Accelerated Degradation Testing Analysis," Post-Print hal-01652218, HAL.
    4. Wu, Ji-Peng & Kang, Rui & Li, Xiao-Yang, 2020. "Uncertain accelerated degradation modeling and analysis considering epistemic uncertainties in time and unit dimension," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    5. Hao, Songhua & Yang, Jun & Berenguer, Christophe, 2018. "Nonlinear step-stress accelerated degradation modelling considering three sources of variability," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 207-215.
    6. Yan, Tao & Lei, Yaguo & Li, Naipeng & Wang, Biao & Wang, Wenting, 2021. "Degradation modeling and remaining useful life prediction for dependent competing failure processes," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    7. Liu, Z. & Yang, Y., 2021. "Uncertain pharmacokinetic model based on uncertain differential equation," Applied Mathematics and Computation, Elsevier, vol. 404(C).
    8. Liu, Z., 2021. "Generalized moment estimation for uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    9. Heonsang Lim & Bong-Jin Yum, 2011. "Optimal design of accelerated degradation tests based on Wiener process models," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(2), pages 309-325, September.
    10. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    11. Peng, Weiwen & Li, Yan-Feng & Yang, Yuan-Jian & Huang, Hong-Zhong & Zuo, Ming J., 2014. "Inverse Gaussian process models for degradation analysis: A Bayesian perspective," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 175-189.
    12. Xiangfeng Yang & Kai Yao, 2017. "Uncertain partial differential equation with application to heat conduction," Fuzzy Optimization and Decision Making, Springer, vol. 16(3), pages 379-403, September.
    13. Liu, Z. & Yang, Y., 2021. "Pharmacokinetic model based on multifactor uncertain differential equation," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Qinqin & Zhu, Yuanguo, 2023. "Reliability analysis of uncertain random systems based on uncertain differential equation," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    2. Yan, Weian & Xu, Xiaofan & Bigaud, David & Cao, Wenqin, 2023. "Optimal design of step-stress accelerated degradation tests based on the Tweedie exponential dispersion process," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ye, Xuerong & Hu, Yifan & Zheng, Bokai & Chen, Cen & Zhai, Guofu, 2022. "A new class of multi-stress acceleration models with interaction effects and its extension to accelerated degradation modelling," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    2. Liu, Z. & Yang, Y., 2021. "Selection of uncertain differential equations using cross validation," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    3. Pang, Zhenan & Si, Xiaosheng & Hu, Changhua & Du, Dangbo & Pei, Hong, 2021. "A Bayesian Inference for Remaining Useful Life Estimation by Fusing Accelerated Degradation Data and Condition Monitoring Data," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    4. Shen, Jiayu & Shi, Jianxin & Gao, Lingceng & Zhang, Qiang & Zhu, Kai, 2023. "Uncertain green product supply chain with government intervention," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 208(C), pages 136-156.
    5. Liu, Di & Wang, Shaoping, 2020. "A degradation modeling and reliability estimation method based on Wiener process and evidential variable," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    6. Yan, Weian & Xu, Xiaofan & Bigaud, David & Cao, Wenqin, 2023. "Optimal design of step-stress accelerated degradation tests based on the Tweedie exponential dispersion process," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    7. Wu, Ji-Peng & Kang, Rui & Li, Xiao-Yang, 2020. "Uncertain accelerated degradation modeling and analysis considering epistemic uncertainties in time and unit dimension," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    8. Zheng, Bokai & Chen, Cen & Lin, Yigang & Hu, Yifan & Ye, Xuerong & Zhai, Guofu & Zio, Enrico, 2022. "Optimal design of step-stress accelerated degradation test oriented by nonlinear and distributed degradation process," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    9. Jia, Lifen & Liu, Xueyong, 2021. "Optimal harvesting strategy based on uncertain logistic population model," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    10. Chen, Chuanhai & Li, Bowen & Guo, Jinyan & Liu, Zhifeng & Qi, Baobao & Hua, Chunlei, 2022. "Bearing life prediction method based on the improved FIDES reliability model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    11. Pang, Zhenan & Li, Tianmei & Pei, Hong & Si, Xiaosheng, 2023. "A condition-based prognostic approach for age- and state-dependent partially observable nonlinear degrading system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    12. Chen, Dan & Liu, Yang, 2023. "Uncertain Gordon-Schaefer model driven by Liu process," Applied Mathematics and Computation, Elsevier, vol. 450(C).
    13. Li, Naipeng & Gebraeel, Nagi & Lei, Yaguo & Fang, Xiaolei & Cai, Xiao & Yan, Tao, 2021. "Remaining useful life prediction based on a multi-sensor data fusion model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    14. Liu, Di & Wang, Shaoping & Cui, Xiaoyu, 2022. "An artificial neural network supported Wiener process based reliability estimation method considering individual difference and measurement error," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    15. Caiwen Gao & Zhiqiang Zhang & Baoliang Liu, 2022. "Uncertain Population Model with Jumps," Mathematics, MDPI, vol. 10(13), pages 1-12, June.
    16. Zhang, Guidong & Sheng, Yuhong, 2022. "Estimating time-varying parameters in uncertain differential equations," Applied Mathematics and Computation, Elsevier, vol. 425(C).
    17. Tingqing Ye & Baoding Liu, 2023. "Uncertain hypothesis test for uncertain differential equations," Fuzzy Optimization and Decision Making, Springer, vol. 22(2), pages 195-211, June.
    18. Liu, Zhe & Wang, Shihai & Liu, Bin & Kang, Rui, 2023. "Change point software belief reliability growth model considering epistemic uncertainties," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    19. Chen, Wen-Bin & Li, Xiao-Yang & Kang, Rui, 2022. "Integration for degradation analysis with multi-source ADT datasets considering dataset discrepancies and epistemic uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    20. Hao, Songhua & Yang, Jun & Berenguer, Christophe, 2019. "Degradation analysis based on an extended inverse Gaussian process model with skew-normal random effects and measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 261-270.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:225:y:2022:i:c:s0951832022002770. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.