IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v228y2022ics0951832022004343.html
   My bibliography  Save this article

A new class of multi-stress acceleration models with interaction effects and its extension to accelerated degradation modelling

Author

Listed:
  • Ye, Xuerong
  • Hu, Yifan
  • Zheng, Bokai
  • Chen, Cen
  • Zhai, Guofu

Abstract

Most products operate under multiple stresses. The influences of multi-stress factors on products are commonly not independent and promote a more violent degradation through interactions, referred to as stress interaction effects. However, few studies consider such effects in multi-stress acceleration models, which may reduce the extrapolation precision and further lead to an inaccurate reliability assessment. In this paper, a new class of multi-stress acceleration models with interaction effects is designed to extrapolate more accurate reliability metrics under multi-stress operating conditions. The main stress effect terms are determined by two criteria: physical stress-based ageing law and statistical correlation. The interaction effects are interpreted as the influences of other stress variables on the main stress effects. In particular, the explicit functions of interaction effects are alternative, which can be identified by adaptive optimization using the maximum likelihood criterion. Furthermore, this multi-stress acceleration model is extended to an accelerated degradation model by integrating a generalized Wiener process with nonlinear time scale functions and random effects. The acceleration factor constant principle is utilized to identify the stress-dependent parameters, facilitating a more appropriate model development. Finally, simulation and a real-world case are performed to validate the effectiveness and practical values of the proposed model.

Suggested Citation

  • Ye, Xuerong & Hu, Yifan & Zheng, Bokai & Chen, Cen & Zhai, Guofu, 2022. "A new class of multi-stress acceleration models with interaction effects and its extension to accelerated degradation modelling," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
  • Handle: RePEc:eee:reensy:v:228:y:2022:i:c:s0951832022004343
    DOI: 10.1016/j.ress.2022.108815
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022004343
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108815?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hao, Songhua & Yang, Jun & Berenguer, Christophe, 2019. "Degradation analysis based on an extended inverse Gaussian process model with skew-normal random effects and measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 261-270.
    2. Lanqing Hong & Zhi-Sheng Ye & Josephine Kartika Sari, 2018. "Interval estimation for Wiener processes based on accelerated degradation test data," IISE Transactions, Taylor & Francis Journals, vol. 50(12), pages 1043-1057, December.
    3. Cheng, Yao & Elsayed, Elsayed A., 2017. "Reliability modeling of mixtures of one-shot units under thermal cyclic stresses," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 58-66.
    4. Zheng, Bokai & Chen, Cen & Lin, Yigang & Hu, Yifan & Ye, Xuerong & Zhai, Guofu & Zio, Enrico, 2022. "Optimal design of step-stress accelerated degradation test oriented by nonlinear and distributed degradation process," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    5. Zhou, Shirong & Tang, Yincai & Xu, Ancha, 2021. "A generalized Wiener process with dependent degradation rate and volatility and time-varying mean-to-variance ratio," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Ma, Zhonghai & Liao, Haitao & Ji, Hui & Wang, Shaoping & Yin, Fanglong & Nie, Songlin, 2021. "Optimal design of hybrid accelerated test based on the Inverse Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    7. Wang, Xiaofei & Wang, Bing Xing & Jiang, Pei Hua & Hong, Yili, 2020. "Accurate reliability inference based on Wiener process with random effects for degradation data," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    8. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    9. Sun, Fuqiang & Fu, Fangyou & Liao, Haitao & Xu, Dan, 2020. "Analysis of multivariate dependent accelerated degradation data using a random-effect general Wiener process and D-vine Copula," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    10. Elsayed, E.A. & Zhang, Hao, 2007. "Design of PH-based accelerated life testing plans under multiple-stress-type," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 286-292.
    11. Hao, Songhua & Yang, Jun & Berenguer, Christophe, 2018. "Nonlinear step-stress accelerated degradation modelling considering three sources of variability," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 207-215.
    12. Yao Liu & Yashun Wang & Zhengwei Fan & Xun Chen & Chunhua Zhang & Yuanyuan Tan, 2020. "A new universal multi-stress acceleration model and multi-parameter estimation method based on particle swarm optimization," Journal of Risk and Reliability, , vol. 234(6), pages 764-778, December.
    13. Zhai, Qingqing & Chen, Piao & Hong, Lanqing & Shen, Lijuan, 2018. "A random-effects Wiener degradation model based on accelerated failure time," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 94-103.
    14. Liu, Yao & Wang, Yashun & Fan, Zhengwei & Bai, Guanghan & Chen, Xun, 2021. "Reliability modeling and a statistical inference method of accelerated degradation testing with multiple stresses and dependent competing failure processes," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    15. Yan, Tao & Lei, Yaguo & Li, Naipeng & Wang, Biao & Wang, Wenting, 2021. "Degradation modeling and remaining useful life prediction for dependent competing failure processes," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    16. Veloso, Guilherme A. & Loschi, Rosangela H., 2021. "Dynamic linear degradation model: Dealing with heterogeneity in degradation paths," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    17. Lin, Kunsong & Chen, Yunxia & Xu, Dan, 2017. "Reliability assessment model considering heterogeneous population in a multiple stresses accelerated test," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 134-143.
    18. Yan, Bingxin & Ma, Xiaobing & Yang, Li & Wang, Han & Wu, Tianyi, 2020. "A novel degradation-rate-volatility related effect Wiener process model with its extension to accelerated ageing data analysis," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ao & Wang, Zhihua & Bao, Rui & Liu, Chengrui & Wu, Qiong & Cao, Shihao, 2023. "A novel failure time estimation method for degradation analysis based on general nonlinear Wiener processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    2. Muhammad, Isyaku & Xiahou, Tangfan & Liu, Yu & Muhammad, Mustapha, 2024. "A random-effect Wiener process degradation model with transmuted normal distribution and ABC-Gibbs algorithm for parameter estimation," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    3. Li, Yang & Gao, Haifeng & Chen, Hongtian & Liu, Chun & Yang, Zhe & Zio, Enrico, 2024. "Accelerated degradation testing for lifetime analysis considering random effects and the influence of stress and measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    4. Chen, Wen-Bin & Li, Xiao-Yang & Wu, Ji-Peng & Kang, Rui, 2024. "Uncertain random accelerated degradation modelling and statistical analysis with aleatory and epistemic uncertainties from multiple dimensions," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Bokai & Chen, Cen & Lin, Yigang & Hu, Yifan & Ye, Xuerong & Zhai, Guofu & Zio, Enrico, 2022. "Optimal design of step-stress accelerated degradation test oriented by nonlinear and distributed degradation process," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    2. Liu, Zhe & Li, Xiaoyang & Kang, Rui, 2022. "Uncertain differential equation based accelerated degradation modeling," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    3. Song, Kai & Cui, Lirong, 2022. "A common random effect induced bivariate gamma degradation process with application to remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    4. Li, Yang & Gao, Haifeng & Chen, Hongtian & Liu, Chun & Yang, Zhe & Zio, Enrico, 2024. "Accelerated degradation testing for lifetime analysis considering random effects and the influence of stress and measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    5. Zhang, Ao & Wang, Zhihua & Bao, Rui & Liu, Chengrui & Wu, Qiong & Cao, Shihao, 2023. "A novel failure time estimation method for degradation analysis based on general nonlinear Wiener processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    6. Zhou, Shirong & Tang, Yincai & Xu, Ancha, 2021. "A generalized Wiener process with dependent degradation rate and volatility and time-varying mean-to-variance ratio," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Wang, Xiaofei & Wang, Bing Xing & Jiang, Pei Hua & Hong, Yili, 2020. "Accurate reliability inference based on Wiener process with random effects for degradation data," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    8. Ekene Gabriel Okafor & Whit Vinson & David Ryan Huitink, 2023. "Effect of Stress Interaction on Multi-Stress Accelerated Life Test Plan: Assessment Based on Particle Swarm Optimization," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    9. Wang, Zhijie & Zhai, Qingqing & Chen, Piao, 2021. "Degradation modeling considering unit-to-unit heterogeneity-A general model and comparative study," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Chen, Wen-Bin & Li, Xiao-Yang & Kang, Rui, 2022. "Integration for degradation analysis with multi-source ADT datasets considering dataset discrepancies and epistemic uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    11. Sun, Xuxue & Cai, Wenjun & Li, Mingyang, 2021. "A hierarchical modeling approach for degradation data with mixed-type covariates and latent heterogeneity," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    12. Chen, Xingyu & Yang, Qingyu & Wu, Xin, 2022. "Nonlinear degradation model and reliability analysis by integrating image covariate," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    13. Yan, Weian & Xu, Xiaofan & Bigaud, David & Cao, Wenqin, 2023. "Optimal design of step-stress accelerated degradation tests based on the Tweedie exponential dispersion process," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    14. Lu, Biao & Chen, Zhen & Zhao, Xufeng, 2021. "Data-driven dynamic predictive maintenance for a manufacturing system with quality deterioration and online sensors," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    15. Fang, Guanqi & Pan, Rong & Wang, Yukun, 2022. "Inverse Gaussian processes with correlated random effects for multivariate degradation modeling," European Journal of Operational Research, Elsevier, vol. 300(3), pages 1177-1193.
    16. Jiang, Deyin & Chen, Tianyu & Xie, Juanzhang & Cui, Weimin & Song, Bifeng, 2023. "A mechanical system reliability degradation analysis and remaining life estimation method——With the example of an aircraft hatch lock mechanism," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    17. Chen, Chuanhai & Li, Bowen & Guo, Jinyan & Liu, Zhifeng & Qi, Baobao & Hua, Chunlei, 2022. "Bearing life prediction method based on the improved FIDES reliability model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    18. Liang, Qingzhu & Yang, Yinghao & Peng, Changhong, 2023. "A reliability model for systems subject to mutually dependent degradation processes and random shocks under dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    19. Pang, Zhenan & Li, Tianmei & Pei, Hong & Si, Xiaosheng, 2023. "A condition-based prognostic approach for age- and state-dependent partially observable nonlinear degrading system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    20. Liu, Xingheng & Matias, José & Jäschke, Johannes & Vatn, Jørn, 2022. "Gibbs sampler for noisy Transformed Gamma process: Inference and remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:228:y:2022:i:c:s0951832022004343. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.