IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v243y2024ics0951832023008207.html
   My bibliography  Save this article

Uncertain random accelerated degradation modelling and statistical analysis with aleatory and epistemic uncertainties from multiple dimensions

Author

Listed:
  • Chen, Wen-Bin
  • Li, Xiao-Yang
  • Wu, Ji-Peng
  • Kang, Rui

Abstract

Accelerated degradation testing (ADT) is commonly employed for degradation analysis and reliability evaluations. Due to limitations in practical ADTs, aleatory and epistemic uncertainties are simultaneously embodied in time, unit, and stress dimensions but they are not considered comprehensively and integrated scientifically currently. To address such problems, we focus on the most common situation in ADTs that test time is relatively long (reflecting aleatory uncertainties in time dimension) while the numbers of test units and stress levels are quite small (reflecting epistemic uncertainties in unit and stress dimensions), and establish an uncertain random accelerated degradation model (URADM). In the URADM, aleatory and epistemic uncertainties are quantified using probability theory and uncertainty theory, respectively, and they are integrated using chance theory. Then, first passage time and reliability evaluations are derived. Next, a three-step uncertain random statistical method is presented for parameter estimations, where aleatory and epistemic uncertainties are divided carefully and quantified separately. A simulation study and a practical case are conducted to show the effectiveness of the URADM. Results reveal that the URADM can not only predict deterministic degradation trends with high accuracy as existing methods do, but contribute degradation boundaries well covering ADT data with narrower boundaries and higher stability.

Suggested Citation

  • Chen, Wen-Bin & Li, Xiao-Yang & Wu, Ji-Peng & Kang, Rui, 2024. "Uncertain random accelerated degradation modelling and statistical analysis with aleatory and epistemic uncertainties from multiple dimensions," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023008207
    DOI: 10.1016/j.ress.2023.109906
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023008207
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023008207. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.