IDEAS home Printed from
   My bibliography  Save this article

A co-simulation approach to study the impact of gravity collective irrigation constraints on plant dynamics in Southern France


  • Richard, Bastien
  • Bonté, Bruno
  • Delmas, Magalie
  • Braud, Isabelle
  • Cheviron, Bruno
  • Veyssier, Julien
  • Barreteau, Olivier


Crop models allow simulating irrigated plant dynamics at the plot level. However, in many places irrigation is managed collectively to share water at the network level. To study the impact of the irrigation network constraints on plant dynamics, we proposed a co-simulation approach based on the coupling of the Optirrig crop model at the plot level with the WatASit agent-based model at the network level. As a proof of concept applied on a typical gravity network of the South-East of France, the approach allowed to consider the effects of the network spatial (i.e. water flow gradient) and temporal (i.e. network coordination) constraints on leaf area index and water stress index dynamics of 16 cereal plots. Four progressive levels of collective irrigation constraints are simulated: no collective constraints, space collective constraints, time collective constraints, and space and time collective constraints. Retrospective simulation of the 2017 irrigation campaign is consistent with field surveys, and simulation results suggest that plant water stress could be underestimated when simulated at the plot level rather than at the network level. Spatially, the most severe water stress was observed for the plants located furthest downstream of the network. Temporally, the absence of network coordination can lead to earlier plant water stress and lower plant growth during the collective irrigation campaign, while time-slot-based coordination tends to delay the impact. For future research, reinforcing the coupling from the crop model to the agent-based model could allow to study the feedback loop of plant dynamics on irrigation practice adaptations. It is also a first step towards an optimization approach for irrigation networks.

Suggested Citation

  • Richard, Bastien & Bonté, Bruno & Delmas, Magalie & Braud, Isabelle & Cheviron, Bruno & Veyssier, Julien & Barreteau, Olivier, 2022. "A co-simulation approach to study the impact of gravity collective irrigation constraints on plant dynamics in Southern France," Agricultural Water Management, Elsevier, vol. 262(C).
  • Handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421004820
    DOI: 10.1016/j.agwat.2021.107205

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Reidsma, Pytrik & Ewert, Frank & Boogaard, Hendrik & Diepen, Kees van, 2009. "Regional crop modelling in Europe: The impact of climatic conditions and farm characteristics on maize yields," Agricultural Systems, Elsevier, vol. 100(1-3), pages 51-60, April.
    2. Pepijn Schreinemachers & Chakrit Potchanasin & Thomas Berger & Sithidech Roygrong, 2010. "Agent‐based modeling for ex ante assessment of tree crop innovations: litchis in northern Thailand," Agricultural Economics, International Association of Agricultural Economists, vol. 41(6), pages 519-536, November.
    3. Schreinemachers, Pepijn & Berger, Thomas & Aune, Jens B., 2007. "Simulating soil fertility and poverty dynamics in Uganda: A bio-economic multi-agent systems approach," Ecological Economics, Elsevier, vol. 64(2), pages 387-401, December.
    4. Berntsen, J. & Petersen, B. M. & Jacobsen, B. H. & Olesen, J. E. & Hutchings, N. J., 2003. "Evaluating nitrogen taxation scenarios using the dynamic whole farm simulation model FASSET," Agricultural Systems, Elsevier, vol. 76(3), pages 817-839, June.
    5. Merot, A. & Bergez, J.-E. & Capillon, A. & Wery, J., 2008. "Analysing farming practices to develop a numerical, operational model of farmers' decision-making processes: An irrigated hay cropping system in France," Agricultural Systems, Elsevier, vol. 98(2), pages 108-118, September.
    6. Khaledian, M.R. & Mailhol, J.C. & Ruelle, P. & Rosique, P., 2009. "Adapting PILOTE model for water and yield management under direct seeding system: The case of corn and durum wheat in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 96(5), pages 757-770, May.
    7. M.R. Khaledian & J.C. Mailhol & P. Ruelle & J.L. Rosique, 2009. "Adapting PILOTE model for water and yield management under direct seeding system: The case of corn and durum wheat in a Mediterranean context," Post-Print hal-00454543, HAL.
    8. Mailhol, Jean Claude & Ruelle, Pierre & Walser, Sabine & Schütze, Niels & Dejean, Cyril, 2011. "Analysis of AET and yield predictions under surface and buried drip irrigation systems using the Crop Model PILOTE and Hydrus-2D," Agricultural Water Management, Elsevier, vol. 98(6), pages 1033-1044, April.
    9. McCown, R.L. & Hammer, G.L. & Hargreaves, J.N.G. & Holzworth, D. & Huth, N.I., 1995. "APSIM: an agricultural production system simulation model for operational research," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 39(3), pages 225-231.
    10. Belcher, K. W. & Boehm, M. M. & Fulton, M. E., 2004. "Agroecosystem sustainability: a system simulation model approach," Agricultural Systems, Elsevier, vol. 79(2), pages 225-241, February.
    11. Grimm, Volker & Berger, Uta & DeAngelis, Donald L. & Polhill, J. Gary & Giske, Jarl & Railsback, Steven F., 2010. "The ODD protocol: A review and first update," Ecological Modelling, Elsevier, vol. 221(23), pages 2760-2768.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Elamri, Y. & Cheviron, B. & Lopez, J.-M. & Dejean, C. & Belaud, G., 2018. "Water budget and crop modelling for agrivoltaic systems: Application to irrigated lettuces," Agricultural Water Management, Elsevier, vol. 208(C), pages 440-453.
    2. Utomo, Dhanan Sarwo & Onggo, Bhakti Stephan & Eldridge, Stephen, 2018. "Applications of agent-based modelling and simulation in the agri-food supply chains," European Journal of Operational Research, Elsevier, vol. 269(3), pages 794-805.
    3. M.R. Khaledian & J.C. Mailhol & P. Ruelle & C. Dejean, 2013. "Effect of cropping strategies on the irrigation water productivity of durum wheat," Plant, Soil and Environment, Czech Academy of Agricultural Sciences, vol. 59(1), pages 29-36.
    4. Mailhol, J.-C. & Albasha, R. & Cheviron, B. & Lopez, J.-M. & Ruelle, P. & Dejean, C., 2018. "The PILOTE-N model for improving water and nitrogen management practices: Application in a Mediterranean context," Agricultural Water Management, Elsevier, vol. 204(C), pages 162-179.
    5. Albasha, Rami & Mailhol, Jean-Claude & Cheviron, Bruno, 2015. "Compensatory uptake functions in empirical macroscopic root water uptake models – Experimental and numerical analysis," Agricultural Water Management, Elsevier, vol. 155(C), pages 22-39.
    6. Kopp, Thomas & Salecker, Jan, 2020. "How traders influence their neighbours: Modelling social evolutionary processes and peer effects in agricultural trade networks," Journal of Economic Dynamics and Control, Elsevier, vol. 117(C).
    7. Quang, Dang Viet & Schreinemachers, Pepijn & Berger, Thomas, 2014. "Ex-ante assessment of soil conservation methods in the uplands of Vietnam: An agent-based modeling approach," Agricultural Systems, Elsevier, vol. 123(C), pages 108-119.
    8. Sebastian Kloss & Raji Pushpalatha & Kefasi Kamoyo & Niels Schütze, 2012. "Evaluation of Crop Models for Simulating and Optimizing Deficit Irrigation Systems in Arid and Semi-arid Countries Under Climate Variability," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 26(4), pages 997-1014, March.
    9. Grovermann, Christian & Schreinemachers, Pepijn & Riwthong, Suthathip & Berger, Thomas, 2017. "‘Smart’ policies to reduce pesticide use and avoid income trade-offs: An agent-based model applied to Thai agriculture," Ecological Economics, Elsevier, vol. 132(C), pages 91-103.
    10. Shuang Liu & Yuru Gao & Huilin Lang & Yong Liu & Hong Zhang, 2022. "Effects of Conventional Tillage and No-Tillage Systems on Maize ( Zea mays L.) Growth and Yield, Soil Structure, and Water in Loess Plateau of China: Field Experiment and Modeling Studies," Land, MDPI, vol. 11(11), pages 1-14, October.
    11. Mubarak, Ibrahim & Mailhol, Jean Claude & Angulo-Jaramillo, Rafael & Bouarfa, Sami & Ruelle, Pierre, 2009. "Effect of temporal variability in soil hydraulic properties on simulated water transfer under high-frequency drip irrigation," Agricultural Water Management, Elsevier, vol. 96(11), pages 1547-1559, November.
    12. Wei, Zheng & Paredes, Paula & Liu, Yu & Chi, Wei Wei & Pereira, Luis S., 2015. "Modelling transpiration, soil evaporation and yield prediction of soybean in North China Plain," Agricultural Water Management, Elsevier, vol. 147(C), pages 43-53.
    13. Shang, Linmei & Heckelei, Thomas & Gerullis, Maria K. & Börner, Jan & Rasch, Sebastian, 2021. "Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction," Agricultural Systems, Elsevier, vol. 190(C).
    14. Berger, Thomas, 2015. "Adaptation of farm-households to increasing climate variability in Ethiopia: Bioeconomic modeling of innovation diffusion and policy interventions," 2015 Conference, August 9-14, 2015, Milan, Italy 229062, International Association of Agricultural Economists.
    15. Martin, G. & Duru, M. & Schellberg, J. & Ewert, F., 2012. "Simulations of plant productivity are affected by modelling approaches of farm management," Agricultural Systems, Elsevier, vol. 109(C), pages 25-34.
    16. Popova, Zornitsa & Pereira, Luis S., 2011. "Modelling for maize irrigation scheduling using long term experimental data from Plovdiv region, Bulgaria," Agricultural Water Management, Elsevier, vol. 98(4), pages 675-683, February.
    17. Kremmydas, Dimitris & Athanasiadis, Ioannis N. & Rozakis, Stelios, 2018. "A review of Agent Based Modeling for agricultural policy evaluation," Agricultural Systems, Elsevier, vol. 164(C), pages 95-106.
    18. Latynskiy, Evgeny & Berger, Thomas, 2015. "UTZ certification for groups of smallholder coffee farmers: Hype of hope?," 2015 Conference, August 9-14, 2015, Milan, Italy 229069, International Association of Agricultural Economists.
    19. Rianne Duinen & Tatiana Filatova & Wander Jager & Anne Veen, 2016. "Going beyond perfect rationality: drought risk, economic choices and the influence of social networks," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 57(2), pages 335-369, November.
    20. Carrasco, L. Roman & Cook, David & Baker, Richard & MacLeod, Alan & Knight, Jon D. & Mumford, John D., 2012. "Towards the integration of spread and economic impacts of biological invasions in a landscape of learning and imitating agents," Ecological Economics, Elsevier, vol. 76(C), pages 95-103.


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:262:y:2022:i:c:s0378377421004820. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.