IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v221y2024ics0308521x2400297x.html
   My bibliography  Save this article

Designing policies to promote the adoption of digital phytosanitation towards sustainability: The case of the olive sector in Andalusia

Author

Listed:
  • Parra-López, Carlos
  • Reina-Usuga, Liliana
  • Garcia-Garcia, Guillermo
  • Carmona-Torres, Carmen

Abstract

Digital phytosanitation is at the forefront of the Agriculture 4.0 revolution, using digital technologies and data-driven approaches for effective pest and disease management. However, these advances face technical, economic and implementation challenges such as cost, infrastructure requirements and lack of immediate economic returns. In the olive sector, digital technologies are essential for threat monitoring and pest management, contributing to quality and sustainability, but their adoption is slow, especially in traditional agricultural regions such as the Mediterranean.

Suggested Citation

  • Parra-López, Carlos & Reina-Usuga, Liliana & Garcia-Garcia, Guillermo & Carmona-Torres, Carmen, 2024. "Designing policies to promote the adoption of digital phytosanitation towards sustainability: The case of the olive sector in Andalusia," Agricultural Systems, Elsevier, vol. 221(C).
  • Handle: RePEc:eee:agisys:v:221:y:2024:i:c:s0308521x2400297x
    DOI: 10.1016/j.agsy.2024.104147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X2400297X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2024.104147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Carmona-Torres, Carmen & Parra-López, Carlos & Sayadi, Samir & Reina-Usuga, Liliana, 2023. "Abandonment factors and alternatives in sloping olive growing: The case of Andalusia, Spain," Land Use Policy, Elsevier, vol. 132(C).
    2. Jonathan McFadden & Francesca Casalini & Terry Griffin & Jesús Antón, 2022. "The digitalisation of agriculture: A literature review and emerging policy issues," OECD Food, Agriculture and Fisheries Papers 176, OECD Publishing.
    3. Larkin, Sherry L. & Perruso, Larry & Marra, Michele C. & Roberts, Roland K. & English, Burton C. & Larson, James A. & Cochran, Rebecca L. & Martin, Steven W., 2005. "Factors Affecting Perceived Improvements in Environmental Quality from Precision Farming," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 37(3), pages 577-588, December.
    4. Martha Swamila & Damas Philip & Adam Meshack Akyoo & Stefan Sieber & Mateete Bekunda & Anthony Anderson Kimaro, 2020. "Gliricidia Agroforestry Technology Adoption Potential in Selected Dryland Areas of Dodoma Region, Tanzania," Agriculture, MDPI, vol. 10(7), pages 1-17, July.
    5. Carmona-Torres, Carmen & Parra-López, Carlos & Hinojosa-Rodríguez, Ascensión & Sayadi, Samir, 2014. "Farm-level multifunctionality associated with farming techniques in olive growing: An integrated modeling approach," Agricultural Systems, Elsevier, vol. 127(C), pages 97-114.
    6. Margherita Masi & Marcello Rosa & Yari Vecchio & Luca Bartoli & Felice Adinolfi, 2022. "The long way to innovation adoption: insights from precision agriculture," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 10(1), pages 1-17, December.
    7. Robert Finger, 2023. "Digital innovations for sustainable and resilient agricultural systems," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(4), pages 1277-1309.
    8. Kevin Schneider & Wopke van der Werf & Martina Cendoya & Monique Mourits & Juan A. Navas-Cortés & Antonio Vicent & Alfons Oude Lansink, 2020. "Impact of Xylella fastidiosa subspecies pauca in European olives," Proceedings of the National Academy of Sciences, Proceedings of the National Academy of Sciences, vol. 117(17), pages 9250-9259, April.
    9. Parra-López, Carlos & Reina-Usuga, Liliana & Garcia-Garcia, Guillermo & Carmona-Torres, Carmen, 2024. "Functional analysis of technological innovation systems enabling digital transformation: A semi-quantitative multicriteria framework applied in the olive sector," Agricultural Systems, Elsevier, vol. 214(C).
    10. R. A. Mumford & R. Macarthur & N. Boonham, 2016. "The role and challenges of new diagnostic technology in plant biosecurity," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(1), pages 103-109, February.
    11. Bruno Basso & John Antle, 2020. "Digital agriculture to design sustainable agricultural systems," Nature Sustainability, Nature, vol. 3(4), pages 254-256, April.
    12. Kuehne, Geoff & Llewellyn, Rick & Pannell, David J. & Wilkinson, Roger & Dolling, Perry & Ouzman, Jackie & Ewing, Mike, 2017. "Predicting farmer uptake of new agricultural practices: A tool for research, extension and policy," Agricultural Systems, Elsevier, vol. 156(C), pages 115-125.
    13. Eliana Lima & Thomas Hopkins & Emma Gurney & Orla Shortall & Fiona Lovatt & Peers Davies & George Williamson & Jasmeet Kaler, 2018. "Drivers for precision livestock technology adoption: A study of factors associated with adoption of electronic identification technology by commercial sheep farmers in England and Wales," PLOS ONE, Public Library of Science, vol. 13(1), pages 1-17, January.
    14. Lajoie-O'Malley, Alana & Bronson, Kelly & van der Burg, Simone & Klerkx, Laurens, 2020. "The future(s) of digital agriculture and sustainable food systems: An analysis of high-level policy documents," Ecosystem Services, Elsevier, vol. 45(C).
    15. Robert Finger, 2024. "Europe's ambitious pesticide policy and its impact on agriculture and food systems," Agricultural Economics, International Association of Agricultural Economists, vol. 55(2), pages 265-269, March.
    16. Alejandro Pena & Juan C. Tejada & Juan David Gonzalez-Ruiz & Mario Gongora, 2022. "Deep Learning to Improve the Sustainability of Agricultural Crops Affected by Phytosanitary Events: A Financial-Risk Approach," Sustainability, MDPI, vol. 14(11), pages 1-28, May.
    17. Yari Vecchio & Marcello De Rosa & Gregorio Pauselli & Margherita Masi & Felice Adinolfi, 2022. "The leading role of perception: the FACOPA model to comprehend innovation adoption," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 10(1), pages 1-19, December.
    18. Abbate, Stefano & Centobelli, Piera & Cerchione, Roberto, 2023. "The digital and sustainable transition of the agri-food sector," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    19. Erik Lichtenberg & James Shortle & James Wilen & David Zilberman, 2010. "Natural Resource Economics and Conservation: Contributions of Agricultural Economics and Agricultural Economists," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 92(2), pages 469-486.
    20. Jui-Hsiung Chuang & Jiun-Hao Wang & Yu-Chang Liou, 2020. "Farmers’ Knowledge, Attitude, and Adoption of Smart Agriculture Technology in Taiwan," IJERPH, MDPI, vol. 17(19), pages 1-8, October.
    21. Barnes, A.P. & Soto, I. & Eory, V. & Beck, B. & Balafoutis, A. & Sánchez, B. & Vangeyte, J. & Fountas, S. & van der Wal, T. & Gómez-Barbero, M., 2019. "Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers," Land Use Policy, Elsevier, vol. 80(C), pages 163-174.
    22. Vecchio, Yari & Di Pasquale, Jorgelina & Del Giudice, Teresa & Pauselli, Gregorio & Masi, Margherita & Adinolfi, Felice, 2022. "Precision farming: what do Italian farmers really think? An application of the Q methodology," Agricultural Systems, Elsevier, vol. 201(C).
    23. Beatrice Garske & Antonia Bau & Felix Ekardt, 2021. "Digitalization and AI in European Agriculture: A Strategy for Achieving Climate and Biodiversity Targets?," Sustainability, MDPI, vol. 13(9), pages 1-21, April.
    24. Jennifer Clapp & Sarah-Louise Ruder, 2020. "Precision Technologies for Agriculture: Digital Farming, Gene-EditedCrops, and the Politics of Sustainability," Global Environmental Politics, MIT Press, vol. 20(3), pages 49-69, August.
    25. Parra-López, Carlos & Reina-Usuga, Liliana & Carmona-Torres, Carmen & Sayadi, Samir & Klerkx, Laurens, 2021. "Digital transformation of the agrifood system: Quantifying the conditioning factors to inform policy planning in the olive sector," Land Use Policy, Elsevier, vol. 108(C).
    26. Wolfert, Sjaak & Ge, Lan & Verdouw, Cor & Bogaardt, Marc-Jeroen, 2017. "Big Data in Smart Farming – A review," Agricultural Systems, Elsevier, vol. 153(C), pages 69-80.
    27. Stilgoe, Jack & Owen, Richard & Macnaghten, Phil, 2013. "Developing a framework for responsible innovation," Research Policy, Elsevier, vol. 42(9), pages 1568-1580.
    28. Giua, Carlo & Materia, Valentina Cristiana & Camanzi, Luca, 2022. "Smart farming technologies adoption: Which factors play a role in the digital transition?," Technology in Society, Elsevier, vol. 68(C).
    29. Johanna Pfeiffer & Andreas Gabriel & Markus Gandorfer, 2021. "Understanding the public attitudinal acceptance of digital farming technologies: a nationwide survey in Germany," Agriculture and Human Values, Springer;The Agriculture, Food, & Human Values Society (AFHVS), vol. 38(1), pages 107-128, February.
    30. Andrea Luvisi & Yiannis G. Ampatzidis & Luigi De Bellis, 2016. "Plant Pathology and Information Technology: Opportunity for Management of Disease Outbreak and Applications in Regulation Frameworks," Sustainability, MDPI, vol. 8(8), pages 1-12, August.
    31. Yi Zheng & Yaoqun Xu & Zeguo Qiu, 2023. "Blockchain Traceability Adoption in Agricultural Supply Chain Coordination: An Evolutionary Game Analysis," Agriculture, MDPI, vol. 13(1), pages 1-21, January.
    32. Liliana Reina-Usuga & Carlos Parra-López & Carmen Carmona-Torres, 2022. "Knowledge Transfer on Digital Transformation: An Analysis of the Olive Landscape in Andalusia, Spain," Land, MDPI, vol. 11(1), pages 1-13, January.
    33. David Nielson & Yuan-Ting Meng & Anna Buyvolova & Artavazd Hakobyan, 2018. "Unleashing the Power of Digital on Farms in Russia - and Seeking Opportunities for Small Farms," World Bank Publications - Reports 30627, The World Bank Group.
    34. Gonçalo C. Rodrigues, 2022. "Precision Agriculture: Strategies and Technology Adoption," Agriculture, MDPI, vol. 12(9), pages 1-4, September.
    35. R. Mumford & R. Macarthur & N. Boonham, 2016. "The role and challenges of new diagnostic technology in plant biosecurity," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 8(1), pages 103-109, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Osrof, Hazem Yusuf & Tan, Cheng Ling & Angappa, Gunasekaran & Yeo, Sook Fern & Tan, Kim Hua, 2023. "Adoption of smart farming technologies in field operations: A systematic review and future research agenda," Technology in Society, Elsevier, vol. 75(C).
    2. Ingram, Julie & Maye, Damian & Bailye, Clive & Barnes, Andrew & Bear, Christopher & Bell, Matthew & Cutress, David & Davies, Lynfa & de Boon, Auvikki & Dinnie, Liz & Gairdner, Julian & Hafferty, Caitl, 2022. "What are the priority research questions for digital agriculture?," Land Use Policy, Elsevier, vol. 114(C).
    3. Hidalgo, Francisco & Quiñones-Ruiz, Xiomara F. & Birkenberg, Athena & Daum, Thomas & Bosch, Christine & Hirsch, Patrick & Birner, Regina, 2023. "Digitalization, sustainability, and coffee. Opportunities and challenges for agricultural development," Agricultural Systems, Elsevier, vol. 208(C).
    4. Metta, Matteo & Ciliberti, Stefano & Obi, Chinedu & Bartolini, Fabio & Klerkx, Laurens & Brunori, Gianluca, 2022. "An integrated socio-cyber-physical system framework to assess responsible digitalisation in agriculture: A first application with Living Labs in Europe," Agricultural Systems, Elsevier, vol. 203(C).
    5. Margherita Masi & Marcello Rosa & Yari Vecchio & Luca Bartoli & Felice Adinolfi, 2022. "The long way to innovation adoption: insights from precision agriculture," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 10(1), pages 1-17, December.
    6. Robert Finger, 2023. "Digital innovations for sustainable and resilient agricultural systems," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 50(4), pages 1277-1309.
    7. Mohr, Svenja & Höhler, Julia, 2023. "Media coverage of digitalization in agriculture - an analysis of media content," Technological Forecasting and Social Change, Elsevier, vol. 187(C).
    8. Ancín, María & Pindado, Emilio & Sánchez, Mercedes, 2022. "New trends in the global digital transformation process of the agri-food sector: An exploratory study based on Twitter," Agricultural Systems, Elsevier, vol. 203(C).
    9. Shang, Linmei & Heckelei, Thomas & Gerullis, Maria K. & Börner, Jan & Rasch, Sebastian, 2021. "Adoption and diffusion of digital farming technologies - integrating farm-level evidence and system interaction," Agricultural Systems, Elsevier, vol. 190(C).
    10. Kok, Kristiaan P.W. & Klerkx, Laurens, 2023. "Addressing the politics of mission-oriented agricultural innovation systems," Agricultural Systems, Elsevier, vol. 211(C).
    11. Granado-Díaz, Rubén & Colombo, Sergio & Romero-Varo, Marina & Villanueva, Anastasio J., 2024. "Farmers' attitudes toward the use of digital technologies in the context of agri-environmental policies," Agricultural Systems, Elsevier, vol. 221(C).
    12. Tilman Reinhardt, 2023. "The farm to fork strategy and the digital transformation of the agrifood sector—An assessment from the perspective of innovation systems," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(2), pages 819-838, June.
    13. Rachel A. Bahn & Abed Al Kareem Yehya & Rami Zurayk, 2021. "Digitalization for Sustainable Agri-Food Systems: Potential, Status, and Risks for the MENA Region," Sustainability, MDPI, vol. 13(6), pages 1-24, March.
    14. Schnebelin, Éléonore, 2022. "Linking the diversity of ecologisation models to farmers' digital use profiles," Ecological Economics, Elsevier, vol. 196(C).
    15. Fleming, Aysha & Jakku, Emma & Fielke, Simon & Taylor, Bruce M. & Lacey, Justine & Terhorst, Andrew & Stitzlein, Cara, 2021. "Foresighting Australian digital agricultural futures: Applying responsible innovation thinking to anticipate research and development impact under different scenarios," Agricultural Systems, Elsevier, vol. 190(C).
    16. Galaz, Victor & Centeno, Miguel A. & Callahan, Peter W. & Causevic, Amar & Patterson, Thayer & Brass, Irina & Baum, Seth & Farber, Darryl & Fischer, Joern & Garcia, David & McPhearson, Timon & Jimenez, 2021. "Artificial intelligence, systemic risks, and sustainability," Technology in Society, Elsevier, vol. 67(C).
    17. Sun, Yong & Miao, Yiling & Xie, Zhiju & Wu, Runtian, 2024. "Drivers and barriers to digital transformation in agriculture: An evolutionary game analysis based on the experience of China," Agricultural Systems, Elsevier, vol. 221(C).
    18. Wolfert, Sjaak & Verdouw, Cor & van Wassenaer, Lan & Dolfsma, Wilfred & Klerkx, Laurens, 2023. "Digital innovation ecosystems in agri-food: design principles and organizational framework," Agricultural Systems, Elsevier, vol. 204(C).
    19. Piancharoenwong, Assanee & Badir, Yuosre F., 2024. "IoT smart farming adoption intention under climate change: The gain and loss perspective," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    20. Lioutas, Evagelos D. & Charatsari, Chrysanthi & De Rosa, Marcello, 2021. "Digitalization of agriculture: A way to solve the food problem or a trolley dilemma?," Technology in Society, Elsevier, vol. 67(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:221:y:2024:i:c:s0308521x2400297x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.