IDEAS home Printed from https://ideas.repec.org/a/cup/jagaec/v37y2005i03p577-588_02.html

Factors Affecting Perceived Improvements in Environmental Quality from Precision Farming

Author

Listed:
  • Larkin, Sherry L.
  • Perruso, Larry
  • Marra, Michele C.
  • Roberts, Roland K.
  • English, Burton C.
  • Larson, James A.
  • Cochran, Rebecca L.
  • Martin, Steven W.

Abstract

This study identified the factors that influenced whether farmers in the Southeastern United States perceived an improvement in environmental quality from adopting precision farming technologies (PFTs). Farmers with larger farms or higher yields were more likely to believe that they observed positive externalities associated with PFTs. Farmers who found PFTs profitable or who believed input reduction was important had higher probabilities whereas those with higher incomes or who were more dependent on farm income were less likely to perceive such benefits. Interestingly, the importance of environmental quality and length of time using PFTs were not found to affect the probability of perceiving an improvement in environmental quality.

Suggested Citation

  • Larkin, Sherry L. & Perruso, Larry & Marra, Michele C. & Roberts, Roland K. & English, Burton C. & Larson, James A. & Cochran, Rebecca L. & Martin, Steven W., 2005. "Factors Affecting Perceived Improvements in Environmental Quality from Precision Farming," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 37(3), pages 577-588, December.
  • Handle: RePEc:cup:jagaec:v:37:y:2005:i:03:p:577-588_02
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1074070800027097/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Other versions of this item:

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Parra-López, Carlos & Reina-Usuga, Liliana & Garcia-Garcia, Guillermo & Carmona-Torres, Carmen, 2024. "Designing policies to promote the adoption of digital phytosanitation towards sustainability: The case of the olive sector in Andalusia," Agricultural Systems, Elsevier, vol. 221(C).
    2. Takács-György, Katalin, 2015. "Chemical Use in Crop Production – Can it be Reduced by New Technologies?," Roczniki (Annals), Polish Association of Agricultural Economists and Agribusiness - Stowarzyszenie Ekonomistow Rolnictwa e Agrobiznesu (SERiA), vol. 2015(3), June.
    3. Pandit, Mahesh & Paudel, Krishna P. & Mishra, Ashok K. & Segarra, Eduardo, 2012. "Adoption and Nonadoption of Precision Farming Technologies by Cotton Farmers," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 125004, Agricultural and Applied Economics Association.
    4. Larson, James A. & Roberts, Roland K. & English, Burton C. & Larkin, Sherry L. & Marra, Michele C. & Martin, Steven W. & Paxton, Kenneth W. & Reeves, Jeanne M., 2007. "Factors Influencing Adoption of Remotely Sensed Imagery for Site-Specific Management in Cotton Production," 2007 Annual Meeting, February 4-7, 2007, Mobile, Alabama 34971, Southern Agricultural Economics Association.
    5. Lambert, Dayton M. & English, Burton & Harper, David & Larkin, Sherry L. & Laron, James & Mooney, Daniel F. & Roberts, Roland & Velandia, Margarita & Reeves, Jeanne, 2014. "Corrigendum to “Adoption and Frequency of Precision Soil Testing in Cotton Production”," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 39(2), pages 1-1.
    6. Stefanini, Melissa & Larson, James A. & Boyer, Christopher N. & Cho, Seong-Hoon & Lambert, Dayton & Yin, Xinhua, 2015. "Profitability of Variable-Rate Technology in Cotton Production," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196995, Southern Agricultural Economics Association.

    More about this item

    JEL classification:

    • C25 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets
    • Q24 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Renewable Resources and Conservation - - - Land

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:jagaec:v:37:y:2005:i:03:p:577-588_02. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/aae .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.