IDEAS home Printed from https://ideas.repec.org/a/ags/paaero/233246.html
   My bibliography  Save this article

Chemical Use In Crop Production – Can It Be Reduced By New Technologies?

Author

Listed:
  • Takács-György, Katalin

Abstract

The necessity of chemical use reduction in agriculture is frequently mentioned. Due to the technical development of chemical and machine industries, we have solutions to spread fewer ingredients per hectare than we did 30 years ago. One of these techniques is site-specific crop production. Depending on the number of farms and land used by turning to site-specific pesticide use, the savings vary between 5341 to 10 682 tons of ingredient in Hungary, and 5110 to 10 221 tons in Poland. Although site-specific crop production is compatible with ecological, economic and social sustainability, its real diffusion is not as fast as it could be. In both countries it is suggested to strengthen medium sized farms and encourage shifting them to site-specific farming, supporting machine sharing forms and services offered by other companies.

Suggested Citation

  • Takács-György, Katalin, 2015. "Chemical Use In Crop Production – Can It Be Reduced By New Technologies?," Roczniki (Annals), Polish Association of Agricultural Economists and Agribusiness - Stowarzyszenie Ekonomistow Rolnictwa e Agrobiznesu (SERiA), vol. 2015(3), June.
  • Handle: RePEc:ags:paaero:233246
    DOI: 10.22004/ag.econ.233246
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/233246/files/17-3-Takacs.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.233246?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Larkin, Sherry L. & Perruso, Larry & Marra, Michele C. & Roberts, Roland K. & English, Burton C. & Larson, James A. & Cochran, Rebecca L. & Martin, Steven W., 2005. "Factors Affecting Perceived Improvements in Environmental Quality from Precision Farming," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 37(3), pages 577-588, December.
    2. Lambert, Dayton M. & Lowenberg-DeBoer, James & Griffin, Terry W. & Peone, J. & Payne, Tim & Daberkow, Stan G., 2004. "Adoption, Profitability, And Making Better Use Of Precision Farming Data," Staff Papers 28615, Purdue University, Department of Agricultural Economics.
    3. Watson, Susan & Segarra, Eduardo & Machado, Stephen & Bynum, Edsel & Archer, Thomas & Bronson, Kevin, 2003. "Precision Farming In Irrigated Corn Production: An Economic Perspective," 2003 Annual Meeting, February 1-5, 2003, Mobile, Alabama 35053, Southern Agricultural Economics Association.
    4. Enikő Lencsés & István Takács & Katalin Takács-György, 2014. "Farmers’ Perception of Precision Farming Technology among Hungarian Farmers," Sustainability, MDPI, vol. 6(12), pages 1-14, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Larson, James A. & Roberts, Roland K. & English, Burton C. & Larkin, Sherry L. & Marra, Michele C. & Martin, Steven W. & Paxton, Kenneth W. & Reeves, Jeanne M., 2007. "Factors Influencing Adoption of Remotely Sensed Imagery for Site-Specific Management in Cotton Production," 2007 Annual Meeting, February 4-7, 2007, Mobile, Alabama 34971, Southern Agricultural Economics Association.
    2. Barnes, A.P. & Soto, I. & Eory, V. & Beck, B. & Balafoutis, A. & Sánchez, B. & Vangeyte, J. & Fountas, S. & van der Wal, T. & Gómez-Barbero, M., 2019. "Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers," Land Use Policy, Elsevier, vol. 80(C), pages 163-174.
    3. Timothy J. Lowe & Paul V. Preckel, 2004. "Decision Technologies for Agribusiness Problems: A Brief Review of Selected Literature and a Call for Research," Manufacturing & Service Operations Management, INFORMS, vol. 6(3), pages 201-208.
    4. Robinson, A. & Campo, K.R. & Isaac, W.A. & Ganpat, W., 2013. "Virtual Outreach: Use Of Mobile Technologies For Knowledge Management And Extension Services In Rural Communities," 49th Annual Meeting, June 30-July 6, 2013, St. Thomas, U.S. Virgin Islands 253574, Caribbean Food Crops Society.
    5. Kolady, Deepthi E. & Van Der Sluis, Evert, 2021. "Adoption Determinants of Precision Agriculture Technologies and Conservation Agriculture: Evidence from South Dakota," Western Economics Forum, Western Agricultural Economics Association, vol. 19(2), December.
    6. J Blasch & B van der Kroon & P van Beukering & R Munster & S Fabiani & P Nino & S Vanino, 2022. "Farmer preferences for adopting precision farming technologies: a case study from Italy," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 49(1), pages 33-81.
    7. Dhoubhadel, Sunil P., 2020. "Precision Agriculture Technologies and Farm Profitability," 2020 Annual Meeting, July 26-28, Kansas City, Missouri 304229, Agricultural and Applied Economics Association.
    8. Walton, Jonathan C. & Larson, James A. & Roberts, Roland K. & Lambert, Dayton M. & English, Burton C. & Larkin, Sherry L. & Marra, Michele C., 2008. "PDA and Handheld GPS Adoption in Precision Cotton Production," 2008 Annual Meeting, February 2-6, 2008, Dallas, Texas 6839, Southern Agricultural Economics Association.
    9. Walton, Jonathan C. & Lambert, Dayton M. & Roberts, Roland K. & Larson, James A. & English, Burton C. & Larkin, Sherry L. & Martin, Steven W. & Marra, Michele C. & Paxton, Kenneth W. & Reeves, Jeanne , 2008. "Adoption and Abandonment of Precision Soil Sampling in Cotton Production," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 33(3), pages 1-21.
    10. Wang, Tong & Jin, Hailong & Sieverding, Heidi & Kumar, Sandeep & Miao, Yuxin & Rao, Xudong & Obembe, Oladipo & Mirzakhani Nafchi, Ali & Redfearn, Daren & Cheye, Stephen, 2023. "Understanding farmer views of precision agriculture profitability in the U.S. Midwest," Ecological Economics, Elsevier, vol. 213(C).
    11. Enikő Lencsés & István Takács & Katalin Takács-György, 2014. "Farmers’ Perception of Precision Farming Technology among Hungarian Farmers," Sustainability, MDPI, vol. 6(12), pages 1-14, November.
    12. Alessandro Scuderi & Giovanni La Via & Giuseppe Timpanaro & Luisa Sturiale, 2022. "The Digital Applications of “Agriculture 4.0”: Strategic Opportunity for the Development of the Italian Citrus Chain," Agriculture, MDPI, vol. 12(3), pages 1-13, March.
    13. Wang, Tong & Jin, Hailong & Sieverding, Heidi L. & Rao, Xudong & Miao, Yuxin & Kumar, Sandeep & Redfearn, Daren & Nafchi, Ali, 2022. "Understanding farmer perceptions of precision agriculture profitability in the U.S. Midwest," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322502, Agricultural and Applied Economics Association.
    14. Madhu Khanna, 2021. "Digital Transformation of the Agricultural Sector: Pathways, Drivers and Policy Implications," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 43(4), pages 1221-1242, December.
    15. Stefanini, Melissa & Larson, James A. & Boyer, Christopher N. & Cho, Seong-Hoon & Lambert, Dayton & Yin, Xinhua, 2015. "Profitability of Variable-Rate Technology in Cotton Production," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 196995, Southern Agricultural Economics Association.
    16. Fernandez-Cornejo, Jorge & Mishra, Ashok K. & Nehring, Richard F. & Hendricks, Chad & Southern, Malaya & Gregory, Alexandra, 2007. "Off-Farm Income, Technology Adoption, And Farm Economic Performance," Economic Research Report 7234, United States Department of Agriculture, Economic Research Service.
    17. Mooney, Daniel F. & Larson, James & Roberts, Roland & English, Burton, 2009. "When Does Variable Rate Technology for Agricultural Sprayers Pay? A Case Study for Cotton Production in Tennessee," Journal of the ASFMRA, American Society of Farm Managers and Rural Appraisers, vol. 2009, pages 1-11.
    18. Yari Vecchio & Marcello De Rosa & Gregorio Pauselli & Margherita Masi & Felice Adinolfi, 2022. "The leading role of perception: the FACOPA model to comprehend innovation adoption," Agricultural and Food Economics, Springer;Italian Society of Agricultural Economics (SIDEA), vol. 10(1), pages 1-19, December.
    19. Griffin, Terry W. & Lowenberg-DeBoer, James, 2008. "Spatial Analysis of Precision Agriculture Data: Role for Extension," 2008 Annual Meeting, February 2-6, 2008, Dallas, Texas 6804, Southern Agricultural Economics Association.
    20. Pandit, Mahesh & Paudel, Krishna P. & Mishra, Ashok K. & Segarra, Eduardo, 2012. "Adoption and Nonadoption of Precision Farming Technologies by Cotton Farmers," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 125004, Agricultural and Applied Economics Association.

    More about this item

    Keywords

    Agribusiness;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:paaero:233246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/seriaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.