IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v173y2019icp469-481.html
   My bibliography  Save this article

Multi-criteria evolutionary algorithm optimization for horticulture crop management

Author

Listed:
  • West, Jason

Abstract

Climate variability requires adaptive production systems in agriculture often resulting in significant irreversible investments. Cultivar replacement programs in horticulture orchards that substitute older varieties for more heat- and drought-resilient varieties have enterprise values that are highly sensitive to the timing of such investments. Farm-level replacement programs are subject to multiple constraints around debt serviceability, operating costs, the replacement cycle and the rate of degradation of the existing orchard. The maximization of enterprise value subject to multiple constraints can be reduced to a multi-objective optimization problem. Over long horizons this optimization process generates a very-large solution space. Using a multi-objective evolutionary algorithm we examine uncertainties around climatic effects and the timing of investments for horticultural operations and derive the optimal times to adapt using cultivar replacement techniques. We find that the investment decision using traditional valuation methods is suboptimal and can result in poor decisions, potentially undermining adaptation efforts. We further show that opposing economic and climatic conditions can adversely impact enterprise value based on mistiming the investment decision. Application of the genetic algorithm solver is demonstrated using a vector-based geographic information system to a farm where individual portions of an orchard are subject to varying rates of production, degradation and age.

Suggested Citation

  • West, Jason, 2019. "Multi-criteria evolutionary algorithm optimization for horticulture crop management," Agricultural Systems, Elsevier, vol. 173(C), pages 469-481.
  • Handle: RePEc:eee:agisys:v:173:y:2019:i:c:p:469-481
    DOI: 10.1016/j.agsy.2019.03.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X17311101
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2019.03.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Joubert, J.W. & Luhandjula, M.K. & Ncube, O. & le Roux, G. & de Wet, F., 2007. "An optimization model for the management of a South African game ranch," Agricultural Systems, Elsevier, vol. 92(1-3), pages 223-239, January.
    2. Raju, K. S & Kumar, D. N, 1999. "Multicriterion decision making in irrigation planning," Agricultural Systems, Elsevier, vol. 62(2), pages 117-129, November.
    3. Avinash K. Dixit & Robert S. Pindyck, 1994. "Investment under Uncertainty," Economics Books, Princeton University Press, edition 1, number 5474.
    4. Raju, Komaragiri Srinivasa & Pillai, C. R. S., 1999. "Multicriterion decision making in performance evaluation of an irrigation system," European Journal of Operational Research, Elsevier, vol. 112(3), pages 479-488, February.
    5. Mainuddin, Mohammed & Das Gupta, Ashim & Raj Onta, Pushpa, 1997. "Optimal crop planning model for an existing groundwater irrigation project in Thailand," Agricultural Water Management, Elsevier, vol. 33(1), pages 43-62, May.
    6. Francisco, Sergio R. & Ali, Mubarik, 2006. "Resource allocation tradeoffs in Manila's peri-urban vegetable production systems: An application of multiple objective programming," Agricultural Systems, Elsevier, vol. 87(2), pages 147-168, February.
    7. Mayer, D. G. & Belward, J. A. & Widell, H. & Burrage, K., 1999. "Survival of the fittest--genetic algorithms versus evolution strategies in the optimization of systems models," Agricultural Systems, Elsevier, vol. 60(2), pages 113-122, May.
    8. Janis M. Carey & David Zilberman, 2002. "A Model of Investment under Uncertainty: Modern Irrigation Technology and Emerging Markets in Water," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 84(1), pages 171-183.
    9. Mayer, D. G. & Belward, J. A. & Burrage, K., 2001. "Robust parameter settings of evolutionary algorithms for the optimisation of agricultural systems models," Agricultural Systems, Elsevier, vol. 69(3), pages 199-213, September.
    10. Rachel St. John & Sándor Tóth, 2015. "Spatially explicit forest harvest scheduling with difference equations," Annals of Operations Research, Springer, vol. 232(1), pages 235-257, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nikouei, Alireza & Asgharipour, Mohammad Reza & Marzban, Zahra, 2022. "Modeling land allocation to produce crops under economic and environmental goals in Iran: a multi-objective programming approach," Ecological Modelling, Elsevier, vol. 471(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. West, J., 2018. "Multi-criteria evolutionary algorithm optimization in horticulture crop management," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 276940, International Association of Agricultural Economists.
    2. Abbas Amini Fasakhodi & Seyed Nouri & Manouchehr Amini, 2010. "Water Resources Sustainability and Optimal Cropping Pattern in Farming Systems; A Multi-Objective Fractional Goal Programming Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 24(15), pages 4639-4657, December.
    3. LOFGREN Asa & MILLOCK Katrin & NAUGES Céline, 2007. "Using Ex Post Data to Estimate the Hurdle Rate of Abatement Investments - An application to the Swedish Pulp and Paper Industry and Energy Sector," LERNA Working Papers 07.06.227, LERNA, University of Toulouse.
    4. Feil, Jan-Henning & Musshoff, Oliver, 2013. "Investment, disinvestment and policy impact analysis in the dairy sector: a real options approach," Structural Change in Agriculture/Strukturwandel im Agrarsektor (SiAg) Working Papers 159229, Humboldt University Berlin, Department of Agricultural Economics.
    5. Tauer, Loren W., 2006. "When to Get In and Out of Dairy Farming: A Real Option Analysis," Agricultural and Resource Economics Review, Cambridge University Press, vol. 35(2), pages 339-347, October.
    6. Quoc V. Luong & Loren W. Tauer, 2006. "A real options analysis of coffee planting in Vietnam," Agricultural Economics, International Association of Agricultural Economists, vol. 35(1), pages 49-57, July.
    7. Hajkowicz, Stefan & Higgins, Andrew, 2008. "A comparison of multiple criteria analysis techniques for water resource management," European Journal of Operational Research, Elsevier, vol. 184(1), pages 255-265, January.
    8. Lu, H.W. & Huang, G.H. & Zhang, Y.M. & He, L., 2012. "Strategic agricultural land-use planning in response to water-supplier variation in a China’s rural region," Agricultural Systems, Elsevier, vol. 108(C), pages 19-28.
    9. Yang, Wanhong & Isik, Murat, 2003. "Integrating Farmer Decision-Making to Target Land Retirement Programs," 2003 Annual meeting, July 27-30, Montreal, Canada 22062, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    10. Anastasios Michailidis & Konstadinos Mattas & Irene Tzouramani & Diamantis Karamouzis, 2009. "A Socioeconomic Valuation of an Irrigation System Project Based on Real Option Analysis Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(10), pages 1989-2001, August.
    11. Lima, Dmitry & Colson, Gregory & Karali, Berna & Guerrero, Bridget & Amosson, Stephen & Wetzstein, Michael, 2013. "A New Look at the Economic Evaluation of Wind Energy as an Alternative to Electric and Natural Gas-Powered Irrigation," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 45(4), pages 739-751, November.
    12. Taylor, Rebecca & Zilberman, David, 2015. "The Diffusion of Process Innovation: The Case of Drip Irrigation in California," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205320, Agricultural and Applied Economics Association.
    13. Li, Haoyang & Zhao, Jinhua, 2018. "What Drives (No) Adoption of New Irrigation Technologies: A Structural Dynamic Estimation Approach," 2018 Annual Meeting, August 5-7, Washington, D.C. 274474, Agricultural and Applied Economics Association.
    14. Ihli, Hanna Julia & Maart, Syster Christin & Musshoff, Oliver, 2012. "Investment and Disinvestment in Irrigation Technology – An Experimental Analysis of Farmers’ Decision Behavior –," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124532, Agricultural and Applied Economics Association.
    15. Niu, Geng & Zheng, Yi & Han, Feng & Qin, Huapeng, 2019. "The nexus of water, ecosystems and agriculture in arid areas: A multiobjective optimization study on system efficiencies," Agricultural Water Management, Elsevier, vol. 223(C), pages 1-1.
    16. Murat Isik, 2006. "Implications of alternative stochastic processes for investment in agricultural technologies," Applied Economics Letters, Taylor & Francis Journals, vol. 13(1), pages 21-27.
    17. Iwai, Nobuyuki & Emerson, Robert D. & Walters, Lurleen M., 2008. "Labor Cost and Technology Adoption: Real Options Approach for the Case of Sugarcane Mechanization in Florida," 2008 Annual Meeting, February 2-6, 2008, Dallas, Texas 6758, Southern Agricultural Economics Association.
    18. Lehmann, Niklaus & Finger, Robert & Klein, Tommy & Calanca, Pierluigi & Walter, Achim, 2013. "Adapting crop management practices to climate change: Modeling optimal solutions at the field scale," Agricultural Systems, Elsevier, vol. 117(C), pages 55-65.
    19. Hafi, Ahmed & Heaney, Anna & Beare, Stephen, 2006. "Investment in irreversible irrigation technology under uncertainty," 2006 Conference (50th), February 8-10, 2006, Sydney, Australia 139769, Australian Agricultural and Resource Economics Society.
    20. Bauner, Christoph & Crago, Christine, 2013. "Adoption of Residential Solar Power Under Uncertainty: Implications for Renewable Energy Incentives," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150641, Agricultural and Applied Economics Association.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:173:y:2019:i:c:p:469-481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.