IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v143y2016icp14-21.html
   My bibliography  Save this article

Assessing rice productivity and adaptation strategies for Southeast Asia under climate change through multi-scale crop modeling

Author

Listed:
  • Chun, Jong Ahn
  • Li, Sanai
  • Wang, Qingguo
  • Lee, Woo-Seop
  • Lee, Eun-Jeong
  • Horstmann, Nina
  • Park, Hojeong
  • Veasna, Touch
  • Vanndy, Lim
  • Pros, Khok
  • Vang, Seng

Abstract

Rice (Oryza sativa L.) is one of the most important staple food crops in Southeast Asia, a region that is also particularly vulnerable to climate change. We introduced a multi-scale crop modeling approach to assess the impacts of climate change on future rice yields in Southeast Asia. National- and farmer-level adaptation strategies may be developed by combining the advantages from regional- and field-scale crop models. Climate variables collected from the COordinated Regional climate Downscaling EXperiment (CORDEX)-East Asia were used as inputs to run the GLAM-Rice and CERES-Rice crop models. Simulations produced by the GLAM-Rice model identified Cambodia as the country in Southeast Asia where the reduction in rice yields under climate change will be the largest (a decrease of approximately 45% in the 2080s under RCP 8.5, relative to the baseline period 1991–2000) without adequate adaptation. The results of the model simulations considering the CO2 fertilization effect showed that improved irrigation will largely increase rice yields (up to 8.2–42.7%, with the greatest increases in yields in Cambodia and Thailand) in the 2080s under RCP 8.5 compared to a scenario without irrigation. In addition, the grid cell that will benefit the most (12.6 °N and 103.8 °E) was identified through further investigation of the spatial distribution of the effects of irrigation for Cambodia. For this grid cell, the CERES-Rice model was used to develop the best combination of adaptation measures. The results show that while a doubled application rate of nitrogen fertilizer (100kgNha−1) will increase rice yields by 3.9% in the 2080s under the RCP 4.5 scenario for the Sen Pidao cultivar, a decrease in rice yield was projected for the Phka Rumduol cultivar under RCP 4.5. For both cultivars, the results show that additional adaptation strategies besides the 100kgNha−1 fertilizer application rate and planting adjustment should be applied in order to offset all of the negative projected impacts of climate change on rice yields in the 2080s under RCP 8.5. It is concluded that this study can be useful to enhance food security in Southeast Asia by providing informed recommendations for efficacious adaptation strategies.

Suggested Citation

  • Chun, Jong Ahn & Li, Sanai & Wang, Qingguo & Lee, Woo-Seop & Lee, Eun-Jeong & Horstmann, Nina & Park, Hojeong & Veasna, Touch & Vanndy, Lim & Pros, Khok & Vang, Seng, 2016. "Assessing rice productivity and adaptation strategies for Southeast Asia under climate change through multi-scale crop modeling," Agricultural Systems, Elsevier, vol. 143(C), pages 14-21.
  • Handle: RePEc:eee:agisys:v:143:y:2016:i:c:p:14-21
    DOI: 10.1016/j.agsy.2015.12.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X15300536
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agsy.2015.12.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lehmann, Niklaus & Finger, Robert & Klein, Tommy & Calanca, Pierluigi & Walter, Achim, 2013. "Adapting crop management practices to climate change: Modeling optimal solutions at the field scale," Agricultural Systems, Elsevier, vol. 117(C), pages 55-65.
    2. Timsina, J. & Humphreys, E., 2006. "Performance of CERES-Rice and CERES-Wheat models in rice-wheat systems: A review," Agricultural Systems, Elsevier, vol. 90(1-3), pages 5-31, October.
    3. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    4. Thomas, Timothy S. & Ponlok, Tin & Bansok, Ros & De Lopez, Thanakvaro & Chiang, Catherine & Phirun, Nang & Chhum, Chhim, 2013. "Cambodian agriculture: Adaptation to climate change impact:," IFPRI discussion papers 1285, International Food Policy Research Institute (IFPRI).
    5. Manzanilla, D.O. & Paris, T.R. & Vergara, G.V. & Ismail, A.M. & Pandey, S. & Labios, R.V. & Tatlonghari, G.T. & Acda, R.D. & Chi, T.T.N. & Duoangsila, K. & Siliphouthone, I. & Manikmas, M.O.A. & Macki, 2011. "Submergence risks and farmers' preferences: Implications for breeding Sub1 rice in Southeast Asia," Agricultural Systems, Elsevier, vol. 104(4), pages 335-347, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Acharjee, Tapos Kumar & van Halsema, Gerardo & Ludwig, Fulco & Hellegers, Petra & Supit, Iwan, 2019. "Shifting planting date of Boro rice as a climate change adaptation strategy to reduce water use," Agricultural Systems, Elsevier, vol. 168(C), pages 131-143.
    2. Singh, Kuntal & McClean, Colin J. & Büker, Patrick & Hartley, Sue E. & Hill, Jane K., 2017. "Mapping regional risks from climate change for rainfed rice cultivation in India," Agricultural Systems, Elsevier, vol. 156(C), pages 76-84.
    3. Yahui Guo & Wenxiang Wu & Yumei Liu & Zhaofei Wu & Xiaojun Geng & Yaru Zhang & Christopher Robin Bryant & Yongshuo Fu, 2020. "Impacts of Climate and Phenology on the Yields of Early Mature Rice in China," Sustainability, MDPI, vol. 12(23), pages 1-16, December.
    4. Wang, Zhaozhi & Zhang, T.Q. & Tan, C.S. & Xue, Lulin & Bukovsky, Melissa & Qi, Z.M., 2021. "Modeling impacts of climate change on crop yield and phosphorus loss in a subsurface drained field of Lake Erie region, Canada," Agricultural Systems, Elsevier, vol. 190(C).
    5. Toro-Mujica, Paula & Aguilar, Claudio & Vera, Raúl & Cornejo, Karen, 2016. "A simulation-based approach for evaluating the effects of farm type, management, and rainfall on the water footprint of sheep grazing systems in a semi-arid environment," Agricultural Systems, Elsevier, vol. 148(C), pages 75-85.
    6. De Yu & Shougeng Hu & Luyi Tong & Cong Xia, 2020. "Spatiotemporal Dynamics of Cultivated Land and Its Influences on Grain Production Potential in Hunan Province, China," Land, MDPI, vol. 9(12), pages 1-22, December.
    7. Diego Portalanza & Finbarr G. Horgan & Valeria Pohlmann & Santiago Vianna Cuadra & Malena Torres-Ulloa & Eduardo Alava & Simone Ferraz & Angelica Durigon, 2022. "Potential Impact of Future Climates on Rice Production in Ecuador Determined Using Kobayashi’s ‘Very Simple Model’," Agriculture, MDPI, vol. 12(11), pages 1-16, November.
    8. Chul-Hee Lim & Seung Hee Kim & Yuyoung Choi & Menas C. Kafatos & Woo-Kyun Lee, 2017. "Estimation of the Virtual Water Content of Main Crops on the Korean Peninsula Using Multiple Regional Climate Models and Evapotranspiration Methods," Sustainability, MDPI, vol. 9(7), pages 1-17, July.
    9. Jeonghyun Kim & Hojeong Park & Jong Ahn Chun & Sanai Li, 2018. "Adaptation Strategies under Climate Change for Sustainable Agricultural Productivity in Cambodia," Sustainability, MDPI, vol. 10(12), pages 1-18, December.
    10. Chandni Singh & James Ford & Debora Ley & Amir Bazaz & Aromar Revi, 2020. "Assessing the feasibility of adaptation options: methodological advancements and directions for climate adaptation research and practice," Climatic Change, Springer, vol. 162(2), pages 255-277, September.
    11. Ran Wang & Yao Jiang & Peng Su & Jing’ai Wang, 2019. "Global Spatial Distributions of and Trends in Rice Exposure to High Temperature," Sustainability, MDPI, vol. 11(22), pages 1-53, November.
    12. Tamilarasu Arivelarasan & V. S. Manivasagam & Vellingiri Geethalakshmi & Kulanthaivel Bhuvaneswari & Kiruthika Natarajan & Mohan Balasubramanian & Ramasamy Gowtham & Raveendran Muthurajan, 2023. "How Far Will Climate Change Affect Future Food Security? An Inquiry into the Irrigated Rice System of Peninsular India," Agriculture, MDPI, vol. 13(3), pages 1-20, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schönhart, Martin & Mitter, Hermine & Schmid, Erwin & Heinrich, Georg & Gobiet, Andreas, 2014. "Integrated Analysis of Climate Change Impacts and Adaptation Measures in Austrian Agriculture," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 63(3).
    2. Mitter, Hermine & Heumesser, Christine & Schmid, Erwin, 2014. "Modelling robust crop production portfolios to assess agricultural vulnerability to climate change," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182702, European Association of Agricultural Economists.
    3. Rafia Afroz, 2017. "An Alternative Model for Supporting the Rice Farmers in Adaptation of Climate Change," International Journal of Economics and Financial Issues, Econjournals, vol. 7(5), pages 317-330.
    4. Srivatsan V. Raghavan & Jiang Ze & Jina Hur & Liu Jiandong & Nguyen Ngoc Son & Sun Yabin & Liong Shie-Yui, 2017. "Distributional Impacts of Climate Change and Food Security in Southeast Asia," Working Papers DP-2016-41, Economic Research Institute for ASEAN and East Asia (ERIA).
    5. Schönhart, Martin & Mitter, Hermine & Schmid, Erwin & Heinrich, Georg & Gobiet, Andreas, 2014. "Integrated Analysis of Climate Change Impacts and Adaptation Measures in Austrian Agriculture," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 63(03), pages 1-21, September.
    6. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    7. Li, Aijun & Du, Nan & Wei, Qian, 2014. "The cross-country implications of alternative climate policies," Energy Policy, Elsevier, vol. 72(C), pages 155-163.
    8. Strand, Jon, 2011. "Carbon offsets with endogenous environmental policy," Energy Economics, Elsevier, vol. 33(2), pages 371-378, March.
    9. Bosetti, Valentina & Carraro, Carlo & Duval, Romain & Tavoni, Massimo, 2011. "What should we expect from innovation? A model-based assessment of the environmental and mitigation cost implications of climate-related R&D," Energy Economics, Elsevier, vol. 33(6), pages 1313-1320.
    10. Richard S. J. Tol & In Chang Hwang & Frédéric Reynès, 2012. "The Effect of Learning on Climate Policy under Fat-tailed Uncertainty," Working Paper Series 5312, Department of Economics, University of Sussex Business School.
    11. Fujii, Hidemichi & Managi, Shunsuke, 2013. "Which industry is greener? An empirical study of nine industries in OECD countries," Energy Policy, Elsevier, vol. 57(C), pages 381-388.
    12. Pycroft, Jonathan & Vergano, Lucia & Hope, Chris & Paci, Daniele & Ciscar, Juan Carlos, 2011. "A tale of tails: Uncertainty and the social cost of carbon dioxide," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 5, pages 1-29.
    13. Simon Levin & Anastasios Xepapadeas, 2021. "On the Coevolution of Economic and Ecological Systems," Annual Review of Resource Economics, Annual Reviews, vol. 13(1), pages 355-377, October.
    14. Hahn Robert, 2010. "Designing Smarter Regulation with Improved Benefit-Cost Analysis," Journal of Benefit-Cost Analysis, De Gruyter, vol. 1(1), pages 1-19, July.
    15. Golub, Alexander (Голуб, Александр), 2018. "Methodological Issues of Assessing Investment Risks in Projects Weakening the Dependence of the Russian Economy on Natural Resources and Providing a Transition to Low-Carbon Development [Методологи," Working Papers 071802, Russian Presidential Academy of National Economy and Public Administration.
    16. Bommier, Antoine & Lanz, Bruno & Zuber, Stéphane, 2015. "Models-as-usual for unusual risks? On the value of catastrophic climate change," Journal of Environmental Economics and Management, Elsevier, vol. 74(C), pages 1-22.
    17. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    18. Matthew J. Holian & Matthew E. Kahn, 2014. "Household Demand for Low Carbon Public Policies: Evidence from California," NBER Working Papers 19965, National Bureau of Economic Research, Inc.
    19. Steve Newbold & Charles Griffiths & Christopher C. Moore & Ann Wolverton & Elizabeth Kopits, 2010. "The "Social Cost of Carbon" Made Simple," NCEE Working Paper Series 201007, National Center for Environmental Economics, U.S. Environmental Protection Agency, revised Aug 2010.
    20. Gupta, Rishabh & Mishra, Ashok, 2019. "Climate change induced impact and uncertainty of rice yield of agro-ecological zones of India," Agricultural Systems, Elsevier, vol. 173(C), pages 1-11.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:143:y:2016:i:c:p:14-21. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.