IDEAS home Printed from https://ideas.repec.org/a/ecm/emetrp/v76y2008i6p1227-1262.html
   My bibliography  Save this article

Best Nonparametric Bounds on Demand Responses

Author

Listed:
  • Richard Blundell
  • Martin Browning
  • Ian Crawford

Abstract

This paper uses revealed preference inequalities to provide the tightest possible (best) nonparametric bounds on predicted consumer responses to price changes using consumer-level data over a finite set of relative price changes. These responses are allowed to vary nonparametrically across the income distribution. This is achieved by combining the theory of revealed preference with the semiparametric estimation of consumer expansion paths (Engel curves). We label these expansion path based bounds on demand responses as E-bounds. Deviations from revealed preference restrictions are measured by preference perturbations which are shown to usefully characterize taste change and to provide a stochastic environment within which violations of revealed preference inequalities can be assessed. Copyright 2008 The Econometric Society.

Suggested Citation

  • Richard Blundell & Martin Browning & Ian Crawford, 2008. "Best Nonparametric Bounds on Demand Responses," Econometrica, Econometric Society, vol. 76(6), pages 1227-1262, November.
  • Handle: RePEc:ecm:emetrp:v:76:y:2008:i:6:p:1227-1262
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.3982/ECTA6069
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Varian, Hal R, 1982. "The Nonparametric Approach to Demand Analysis," Econometrica, Econometric Society, vol. 50(4), pages 945-973, July.
    2. Hal R. Varian, 1983. "Non-parametric Tests of Consumer Behaviour," Review of Economic Studies, Oxford University Press, vol. 50(1), pages 99-110.
    3. Richard Blundell & James L. Powell, 2001. "Endogeneity in nonparametric and semiparametric regression models," CeMMAP working papers CWP09/01, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Richard W. Blundell & Martin Browning & Ian A. Crawford, 2003. "Nonparametric Engel Curves and Revealed Preference," Econometrica, Econometric Society, vol. 71(1), pages 205-240, January.
    5. Arthur Lewbel, 2001. "Demand Systems with and without Errors," American Economic Review, American Economic Association, vol. 91(3), pages 611-618, June.
    6. Whitney K. Newey & James L. Powell & Francis Vella, 1999. "Nonparametric Estimation of Triangular Simultaneous Equations Models," Econometrica, Econometric Society, vol. 67(3), pages 565-604, May.
    7. Blundell, Richard & Pashardes, Panos & Weber, Guglielmo, 1993. "What Do We Learn About Consumer Demand Patterns from Micro Data?," American Economic Review, American Economic Association, vol. 83(3), pages 570-597, June.
    8. Afriat, S N, 1973. "On a System of Inequalities in Demand Analysis: An Extension of the Classical Method," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 14(2), pages 460-472, June.
    9. Banks, James & Blundell, Richard & Lewbel, Arthur, 1996. "Tax Reform and Welfare Measurement: Do We Need Demand System Estimation?," Economic Journal, Royal Economic Society, vol. 106(438), pages 1227-1241, September.
    10. Lewbel, Arthur, 1991. "The Rank of Demand Systems: Theory and Nonparametric Estimation," Econometrica, Econometric Society, vol. 59(3), pages 711-730, May.
    11. Muellbauer, John, 1976. "Community Preferences and the Representative Consumer," Econometrica, Econometric Society, vol. 44(5), pages 979-999, September.
    12. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, September.
    13. Richard Blundell & Alan Duncan, 1998. "Kernel Regression in Empirical Microeconomics," Journal of Human Resources, University of Wisconsin Press, vol. 33(1), pages 62-87.
    14. Deaton, Angus S & Muellbauer, John, 1980. "An Almost Ideal Demand System," American Economic Review, American Economic Association, vol. 70(3), pages 312-326, June.
    15. Varian, Hal R., 1985. "Non-parametric analysis of optimizing behavior with measurement error," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 445-458.
    Full references (including those not matched with items on IDEAS)

    More about this item

    JEL classification:

    • D12 - Microeconomics - - Household Behavior - - - Consumer Economics: Empirical Analysis
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C43 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Index Numbers and Aggregation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:76:y:2008:i:6:p:1227-1262. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/essssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.