IDEAS home Printed from https://ideas.repec.org/a/cje/issued/v48y2015i4p1195-1214.html
   My bibliography  Save this article

Computing, the bootstrap and economics

Author

Listed:
  • Russell Davidson

Abstract

A major contention in this paper is that scientific models can be viewed as virtual realities, implemented, or rendered, by mathematical equations or by computer simulations. Their purpose is to help us understand the external reality that they model. In economics, particularly in econometrics, models make use of random elements, so as to provide quantitatively for phenomena that we cannot or do not wish to model explicitly. By varying the realizations of the random elements in a simulation, it is possible to study counterfactual outcomes, which are necessary for any discussion of causality. The bootstrap is virtual reality within an outer reality. The principle of the bootstrap is that, if its virtual reality mimics as closely as possible the reality that contains it, it can be used to study aspects of that outer reality. The idea of bootstrap iteration is explored, and a discrete model discussed that allows investigators to perform iteration to any desired level.

Suggested Citation

  • Russell Davidson, 2015. "Computing, the bootstrap and economics," Canadian Journal of Economics, Canadian Economics Association, vol. 48(4), pages 1195-1214, November.
  • Handle: RePEc:cje:issued:v:48:y:2015:i:4:p:1195-1214
    DOI: 10.1111/caje.12158
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/caje.12158
    Download Restriction: access restricted to subscribers

    File URL: https://libkey.io/10.1111/caje.12158?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Susan Athey & Guido W. Imbens, 2006. "Identification and Inference in Nonlinear Difference-in-Differences Models," Econometrica, Econometric Society, vol. 74(2), pages 431-497, March.
    2. Davidson, Russell, 2017. "A discrete model for bootstrap iteration," Journal of Econometrics, Elsevier, vol. 201(2), pages 228-236.
    3. Orley Ashenfelter & David E. Card, 1984. "Using the Longitudinal Structure of Earnings to Estimate the Effect of Training Programs," Working Papers 554, Princeton University, Department of Economics, Industrial Relations Section..
    4. Heckman, James J., 2001. "Econometrics and empirical economics," Journal of Econometrics, Elsevier, vol. 100(1), pages 3-5, January.
    5. Davidson, Russell & MacKinnon, James G., 2006. "The power of bootstrap and asymptotic tests," Journal of Econometrics, Elsevier, vol. 133(2), pages 421-441, August.
    6. Horowitz, Joel L. & Savin, N. E., 2000. "Empirically relevant critical values for hypothesis tests: A bootstrap approach," Journal of Econometrics, Elsevier, vol. 95(2), pages 375-389, April.
    7. Ashenfelter, Orley & Card, David, 1985. "Using the Longitudinal Structure of Earnings to Estimate the Effect of Training Programs," The Review of Economics and Statistics, MIT Press, vol. 67(4), pages 648-660, November.
    8. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    9. Sims, Christopher A, 1972. "Money, Income, and Causality," American Economic Review, American Economic Association, vol. 62(4), pages 540-552, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. M. Mouchart & R. Orsi & G. Wunsch, 2020. "Causality in Econometric Modeling. From Theory to Structural Causal Modeling," Working Papers wp1143, Dipartimento Scienze Economiche, Universita' di Bologna.
    2. Boldea, Otilia & Cornea-Madeira, Adriana & Hall, Alastair R., 2019. "Bootstrapping structural change tests," Journal of Econometrics, Elsevier, vol. 213(2), pages 359-397.
    3. Russell Davidson & Victoria Zinde-Walsh, 2017. "Advances in specification testing," Canadian Journal of Economics, Canadian Economics Association, vol. 50(5), pages 1595-1631, December.
    4. Davidson, Russell & Trokić, Mirza, 2020. "The fast iterated bootstrap," Journal of Econometrics, Elsevier, vol. 218(2), pages 451-475.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brian J. Reich & Shu Yang & Yawen Guan & Andrew B. Giffin & Matthew J. Miller & Ana Rappold, 2021. "A Review of Spatial Causal Inference Methods for Environmental and Epidemiological Applications," International Statistical Review, International Statistical Institute, vol. 89(3), pages 605-634, December.
    2. Sina Akbari & Negar Kiyavash & AmirEmad Ghassami, 2025. "Semiparametric Triple Difference Estimators," Papers 2502.19788, arXiv.org, revised Mar 2025.
    3. Guido W. Imbens & Jeffrey M. Wooldridge, 2009. "Recent Developments in the Econometrics of Program Evaluation," Journal of Economic Literature, American Economic Association, vol. 47(1), pages 5-86, March.
    4. Guoying Deng & Manuel A. Hernandez & Shu Xu, 2020. "When Power Plants Leave Town: Environmental Quality and the Housing Market in China," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 77(4), pages 751-780, December.
    5. Victor Chernozhukov & Kaspar Wuthrich & Yinchu Zhu, 2019. "Distributional conformal prediction," Papers 1909.07889, arXiv.org, revised Aug 2021.
    6. Rösner, Anja & Haucap, Justus & Heimeshoff, Ulrich, 2020. "The impact of consumer protection in the digital age: Evidence from the European Union," International Journal of Industrial Organization, Elsevier, vol. 73(C).
    7. Victor Chernozhukov & Kaspar Wüthrich & Yinchu Zhu, 2021. "An Exact and Robust Conformal Inference Method for Counterfactual and Synthetic Controls," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 1849-1864, October.
    8. Peter Hull & Michal Kolesár & Christopher Walters, 2022. "Labor by design: contributions of David Card, Joshua Angrist, and Guido Imbens," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 603-645, July.
    9. Vikström, Johan, 2009. "Cluster sample inference using sensitivity analysis: the case with few groups," Working Paper Series 2009:15, IFAU - Institute for Evaluation of Labour Market and Education Policy.
    10. Marco D. Huesch & Truls Østbye & Michael K. Ong, 2012. "Measuring The Effect Of Policy Interventions At The Population Level: Some Methodological Concerns," Health Economics, John Wiley & Sons, Ltd., vol. 21(10), pages 1234-1249, October.
    11. Richard Blundell & Monica Costa Dias, 2009. "Alternative Approaches to Evaluation in Empirical Microeconomics," Journal of Human Resources, University of Wisconsin Press, vol. 44(3).
    12. Dmitry Arkhangelsky & Guido Imbens, 2023. "Causal Models for Longitudinal and Panel Data: A Survey," Papers 2311.15458, arXiv.org, revised Jun 2024.
    13. Waqas Umar Latif & Sana Ullah & Wasim Ahmed & Muhammad Umar Sultan & Rana Muhammad Sohail Jafar & Muhammad Tariq & Wang Linping, 2020. "Microcredit and Economic Welfare: Experience of Poor Rural Households from Pakistan," Journal of International Development, John Wiley & Sons, Ltd., vol. 32(6), pages 976-997, August.
    14. Lechner, Michael, 2011. "The Estimation of Causal Effects by Difference-in-Difference Methods," Foundations and Trends(R) in Econometrics, now publishers, vol. 4(3), pages 165-224, November.
    15. Andrew M. Jones & Audrey Laporte & Nigel Rice & Eugenio Zucchelli, 2015. "Do Public Smoking Bans have an Impact on Active Smoking? Evidence from the UK," Health Economics, John Wiley & Sons, Ltd., vol. 24(2), pages 175-192, February.
    16. Li, Kathleen T. & Bell, David R., 2017. "Estimation of average treatment effects with panel data: Asymptotic theory and implementation," Journal of Econometrics, Elsevier, vol. 197(1), pages 65-75.
    17. Guido W. Imbens, 2004. "Nonparametric Estimation of Average Treatment Effects Under Exogeneity: A Review," The Review of Economics and Statistics, MIT Press, vol. 86(1), pages 4-29, February.
    18. Jones A.M & Rice N, 2009. "Econometric Evaluation of Health Policies," Health, Econometrics and Data Group (HEDG) Working Papers 09/09, HEDG, c/o Department of Economics, University of York.
    19. Herrero Prieto, Luis César, 2009. "La investigación en economía de la cultura en España: un estudio bibliométrico/Research in Cultural Economics in Spain: A Bibliometric Study," Estudios de Economia Aplicada, Estudios de Economia Aplicada, vol. 27, pages 35-62, Abril.
    20. Bai Liu & Shuyan Guo & Bin Ding, 2020. "Technical Blossom in Medical Care: The Influence of Big Data Platform on Medical Innovation," IJERPH, MDPI, vol. 17(2), pages 1-17, January.

    More about this item

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cje:issued:v:48:y:2015:i:4:p:1195-1214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Prof. Werner Antweiler (email available below). General contact details of provider: https://edirc.repec.org/data/ceaaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.