IDEAS home Printed from https://ideas.repec.org/a/bpj/sndecm/v6y2002i3n2.html
   My bibliography  Save this article

Power Properties of Nonlinearity Tests for Time Series with Markov Regimes

Author

Listed:
  • Psaradakis Zacharias

    (Birkbeck College, University of London)

  • Spagnolo Nicola

    (Brunei University)

Abstract

This paper examines the relative performance of some popular nonlinearity tests when applied to time series generated by Markov switching autoregressive models. The nonlinearity tests considered include RESET-type tests, the Keenan test, the Tsay test, the McLeodLi test, the BDS test, the White dynamic information matrix test, and the neural network test. Applications to economic time series are also considered.

Suggested Citation

  • Psaradakis Zacharias & Spagnolo Nicola, 2002. "Power Properties of Nonlinearity Tests for Time Series with Markov Regimes," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 6(3), pages 1-16, November.
  • Handle: RePEc:bpj:sndecm:v:6:y:2002:i:3:n:2
    as

    Download full text from publisher

    File URL: https://www.degruyter.com/view/j/snde.2002.6.3/snde.2002.6.3.1091/snde.2002.6.3.1091.xml?format=INT
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Francq, C. & Zakoian, J. -M., 2001. "Stationarity of multivariate Markov-switching ARMA models," Journal of Econometrics, Elsevier, vol. 102(2), pages 339-364, June.
    2. Hansen, Bruce E, 1992. "The Likelihood Ratio Test under Nonstandard Conditions: Testing the Markov Switching Model of GNP," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 7(S), pages 61-82, Suppl. De.
    3. Turner, C.M. & Startz, R. & Nelson, C.R., 1989. "The Markov Model Of Heteroskedasticity, Risk And Learning In The Stock Market," Working Papers 89-01, University of Washington, Department of Economics.
    4. Zacharias Psaradakis, 1998. "Bootstrap-based evaluation of markov-switching time series models," Econometric Reviews, Taylor & Francis Journals, vol. 17(3), pages 275-288.
    5. Barnett, William A. & Gallant, A. Ronald & Hinich, Melvin J. & Jungeilges, Jochen A. & Kaplan, Daniel T. & Jensen, Mark J., 1997. "A single-blind controlled competition among tests for nonlinearity and chaos," Journal of Econometrics, Elsevier, vol. 82(1), pages 157-192.
    6. Turner, Christopher M. & Startz, Richard & Nelson, Charles R., 1989. "A Markov model of heteroskedasticity, risk, and learning in the stock market," Journal of Financial Economics, Elsevier, vol. 25(1), pages 3-22, November.
    7. Garcia, Rene & Perron, Pierre, 1996. "An Analysis of the Real Interest Rate under Regime Shifts," The Review of Economics and Statistics, MIT Press, vol. 78(1), pages 111-125, February.
    8. Yao, J., 2001. "On square-integrability of an AR process with Markov switching," Statistics & Probability Letters, Elsevier, vol. 52(3), pages 265-270, April.
    9. Garcia, Rene, 1998. "Asymptotic Null Distribution of the Likelihood Ratio Test in Markov Switching Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(3), pages 763-788, August.
    10. Zacharias Psaradakis & Nicola Spagnolo, 2003. "On The Determination Of The Number Of Regimes In Markov-Switching Autoregressive Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 24(2), pages 237-252, March.
    11. Hamilton, James D., 1988. "Rational-expectations econometric analysis of changes in regime : An investigation of the term structure of interest rates," Journal of Economic Dynamics and Control, Elsevier, vol. 12(2-3), pages 385-423.
    12. Albert, James H & Chib, Siddhartha, 1993. "Bayes Inference via Gibbs Sampling of Autoregressive Time Series Subject to Markov Mean and Variance Shifts," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 1-15, January.
    13. Lee, Tae-Hwy & White, Halbert & Granger, Clive W. J., 1993. "Testing for neglected nonlinearity in time series models : A comparison of neural network methods and alternative tests," Journal of Econometrics, Elsevier, vol. 56(3), pages 269-290, April.
    14. Hamilton, James D, 1989. "A New Approach to the Economic Analysis of Nonstationary Time Series and the Business Cycle," Econometrica, Econometric Society, vol. 57(2), pages 357-384, March.
    15. Chang-Jin Kim & Charles R. Nelson, 1999. "State-Space Models with Regime Switching: Classical and Gibbs-Sampling Approaches with Applications," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262112388, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Shyh-Wei, 2011. "Are current account deficits really sustainable in the G-7 countries?," Japan and the World Economy, Elsevier, vol. 23(3), pages 190-201.
    2. Chen, Shyh-Wei & Xie, Zixiong, 2015. "Testing for current account sustainability under assumptions of smooth break and nonlinearity," International Review of Economics & Finance, Elsevier, vol. 38(C), pages 142-156.
    3. Peter Tillmann, 2003. "Cointegration and Regime-Switching Risk Premia in the U.S. Term Structure of Interest Rates," Bonn Econ Discussion Papers bgse27_2003, University of Bonn, Germany.
    4. Chen, Shyh-Wei, 2011. "Current account deficits and sustainability: Evidence from the OECD countries," Economic Modelling, Elsevier, vol. 28(4), pages 1455-1464, July.
    5. Ahmad, Yamin & Lo, Ming Chien & Mykhaylova, Olena, 2013. "Causes of nonlinearities in low-order models of the real exchange rate," Journal of International Economics, Elsevier, vol. 91(1), pages 128-141.
    6. Chen, Shyh-Wei, 2014. "Smooth transition, non-linearity and current account sustainability: Evidence from the European countries," Economic Modelling, Elsevier, vol. 38(C), pages 541-554.
    7. Silva Lopes, Artur C. & Florin Zsurkis, Gabriel, 2017. "Are linear models really unuseful to describe business cycle data?," MPRA Paper 79413, University Library of Munich, Germany.
    8. Lopes, Artur Silva & Zsurkis, Gabriel Florin, 2017. "Are linear models really unuseful to describe business cycle data?," Economics Discussion Papers 2017-5, Kiel Institute for the World Economy (IfW).
    9. PeterTillmann, 2004. "Cointegration and Regime-Switching Risk Premia in the U.S. Term Structure of Interest Rates," Computing in Economics and Finance 2004 53, Society for Computational Economics.
    10. Shyh-Wei Chen, 2010. "Testing for the Sustainability of the Current Account Deficit in Four Industrial Countries: A Revisitation," Economics Bulletin, AccessEcon, vol. 30(2), pages 1474-1495.
    11. Chen, Shyh-Wei & Lin, Shih-Mo, 2014. "Non-linear dynamics in international resource markets: Evidence from regime switching approach," Research in International Business and Finance, Elsevier, vol. 30(C), pages 233-247.
    12. Zacharias Psaradakis & Martin Sola & Fabio Spagnolo, 2004. "On Markov error-correction models, with an application to stock prices and dividends," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 19(1), pages 69-88.
    13. O'Brien, Edward J., 2008. "A note on spurious nonlinear regression," Economics Letters, Elsevier, vol. 100(3), pages 366-368, September.
    14. Chen, Shyh-Wei & Hsu, Chi-Sheng, 2016. "Threshold, smooth transition and mean reversion in inflation: New evidence from European countries," Economic Modelling, Elsevier, vol. 53(C), pages 23-36.
    15. Silva Lopes, Artur C. & Florin Zsurkis, Gabriel, 2015. "Revisiting non-linearities in business cycles around the world," MPRA Paper 65668, University Library of Munich, Germany.
    16. Chen, Shyh-Wei & Shen, Chung-Hua, 2012. "Examining the stochastic behavior of REIT returns: Evidence from the regime switching approach," Economic Modelling, Elsevier, vol. 29(2), pages 291-298.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sndecm:v:6:y:2002:i:3:n:2. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: https://www.degruyter.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.