IDEAS home Printed from
   My bibliography  Save this article

Using Local Correlation to Explain Success in Baseball


  • Hamrick Jeff

    (Rhodes College)

  • Rasp John

    (Stetson University)


Statisticians have long employed linear regression models in a variety of circumstances, including the analysis of sports data, because of their flexibility, ease of interpretation, and computational tractability. However, advances in computing technology have made it possible to develop and employ more complicated, nonlinear, and nonparametric procedures. We propose a fully nonparametric nonlinear regression model that is associated to a local correlation function instead of the usual Pearson correlation coefficient. The proposed nonlinear regression model serves the same role as a traditional linear model, but generates deeper and more detailed information about the relationships between the variables being analyzed. We show how nonlinear regression and the local correlation function can be used to analyze sports data by presenting three examples from the game of baseball. In the first and second examples, we demonstrate use of nonlinear regression and the local correlation function as descriptive and inferential tools, respectively. In the third example, we show that nonlinear regression modeling can reveal that traditional linear models are, in fact, quite adequate. Finally, we provide a guide to software for implementing nonlinear regression. The purpose of this paper is to make nonlinear regression and local correlation analysis available as investigative tools for sports data enthusiasts.

Suggested Citation

  • Hamrick Jeff & Rasp John, 2011. "Using Local Correlation to Explain Success in Baseball," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(4), pages 1-29, October.
  • Handle: RePEc:bpj:jqsprt:v:7:y:2011:i:4:n:5

    Download full text from publisher

    File URL:
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Young William A & Holland William S & Weckman Gary R, 2008. "Determining Hall of Fame Status for Major League Baseball Using an Artificial Neural Network," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 4(4), pages 1-46, October.
    2. Lawrence Hadley & John Ruggiero, 2006. "Final-offer arbitration in major league baseball: A nonparametric analysis," Annals of Operations Research, Springer, vol. 145(1), pages 201-209, July.
    3. Smith Lloyd & Downey James, 2009. "Predicting Baseball Hall of Fame Membership using a Radial Basis Function Network," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(1), pages 1-21, January.
    4. Freiman Michael H., 2010. "Using Random Forests and Simulated Annealing to Predict Probabilities of Election to the Baseball Hall of Fame," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(2), pages 1-37, April.
    5. Jahn K. Hakes & Raymond D. Sauer, 2006. "An Economic Evaluation of the Moneyball Hypothesis," Journal of Economic Perspectives, American Economic Association, vol. 20(3), pages 173-186, Summer.
    6. Timothy Anderson & Gunter Sharp, 1997. "A new measure of baseball batters using DEA," Annals of Operations Research, Springer, vol. 73(0), pages 141-155, October.
    7. Kaplan David, 2006. "A Variance Decomposition of Individual Offensive Baseball Performance," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 2(3), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:7:y:2011:i:4:n:5. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.