IDEAS home Printed from
   My bibliography  Save this article

Using Random Forests and Simulated Annealing to Predict Probabilities of Election to the Baseball Hall of Fame


  • Freiman Michael H.

    (University of Pennsylvania)


A popular topic of argument among baseball fans is the prospective Hall of Fame status of current and recently retired players. A player's probability of enshrinement is likely to be affected by a large number of different variables, and can be approached by machine learning methods. In particular, I consider the use of random forests for this purpose. A random forest may be considered a black-box method for predicting the probability of Hall of Fame induction, but a number of parameters must be chosen before the forest can be grown. These parameters include fundamental aspects of the nuts and bolts of the construction of the trees that make up the forest, as well as choices among possible predictor variables. For example, one predictor that may be considered is a measure of the player's having seasons with many home runs hit, and there are multiple competing ways of measuring this. Furthermore, certain deterministic methods of searching the parameter space are partially undermined by the randomness underlying the forest's construction and the fact that, by sheer luck, two forests constructed with the same parameters may have differing qualities of fit. Using simulated annealing, I move through the parameter space in a stochastic fashion, trying many forests and sometimes moving toward a set of parameters even though its fit is apparently not as good as preceding ones. Since probabilities defined based on the votes of terminal nodes of a random forest for classification tend to be too moderate, the results of each forest considered are fed into a logistic regression to produce final probability estimates. From among four simulated annealing runs, the forest with the smallest mean squared error was selected, and analysis of the forests near it in the simulated annealing run indicate that its selection was probably not due to extraordinary "luck." Predictions performed using the out-of-bag samples correctly identify 75% of Baseball Writers Association of America Hall of Fame selections, while misclassifying only 1% of non-selections. Results indicate a smaller mean squared error than a previous neural network approach, although the large number of forests tried and discarded raised concerns about overfitting in this case.

Suggested Citation

  • Freiman Michael H., 2010. "Using Random Forests and Simulated Annealing to Predict Probabilities of Election to the Baseball Hall of Fame," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(2), pages 1-37, April.
  • Handle: RePEc:bpj:jqsprt:v:6:y:2010:i:2:n:12

    Download full text from publisher

    File URL:
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    1. Gill Ryan & Keating Jerome, 2009. "Assessing Methods for College Football Rankings," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(2), pages 1-21, May.
    2. Itay Fainmesser & Chaim Fershtman & Neil Gandal, 2009. "A Consistent Weighted Ranking Scheme With an Application to NCAA College Football Rankings," Journal of Sports Economics, , vol. 10(6), pages 582-600, December.
    3. Steven Caudill, 2009. "OSU and LSU: easy to spell but did they belong? Using the method of paired comparisons to evaluate the BCS rankings and the NCAA football championship game 2007-08," Applied Economics, Taylor & Francis Journals, vol. 41(25), pages 3225-3230.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Lock Dennis & Nettleton Dan, 2014. "Using random forests to estimate win probability before each play of an NFL game," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 10(2), pages 1-9, June.
    2. Hamrick Jeff & Rasp John, 2011. "Using Local Correlation to Explain Success in Baseball," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(4), pages 1-29, October.
    3. Mills Brian M. & Salaga Steven, 2011. "Using Tree Ensembles to Analyze National Baseball Hall of Fame Voting Patterns: An Application to Discrimination in BBWAA Voting," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(4), pages 1-32, October.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:6:y:2010:i:2:n:12. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.