IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v7y2011i4n2.html
   My bibliography  Save this article

A Hierarchical Bayesian Variable Selection Approach to Major League Baseball Hitting Metrics

Author

Listed:
  • McShane Blakeley B.

    (Northwestern University)

  • Braunstein Alexander

    (Chomp, Inc.)

  • Piette James

    (University of Pennsylvania)

  • Jensen Shane T.

    (University of Pennsylvania)

Abstract

Numerous statistics have been proposed to measure offensive ability in Major League Baseball. While some of these measures may offer moderate predictive power in certain situations, it is unclear which simple offensive metrics are the most reliable or consistent. We address this issue by using a hierarchical Bayesian variable selection model to determine which offensive metrics are most predictive within players across time. Our sophisticated methodology allows for full estimation of the posterior distributions for our parameters and automatically adjusts for multiple testing, providing a distinct advantage over alternative approaches. We implement our model on a set of fifty different offensive metrics and discuss our results in the context of comparison to other variable selection techniques. We find that a large number of metrics demonstrate signal. However, these metrics are (i) highly correlated with one another, (ii) can be reduced to about five without much loss of information, and (iii) these five relate to traditional notions of performance (e.g., plate discipline, power, and ability to make contact).

Suggested Citation

  • McShane Blakeley B. & Braunstein Alexander & Piette James & Jensen Shane T., 2011. "A Hierarchical Bayesian Variable Selection Approach to Major League Baseball Hitting Metrics," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 7(4), pages 1-26, October.
  • Handle: RePEc:bpj:jqsprt:v:7:y:2011:i:4:n:2
    as

    Download full text from publisher

    File URL: https://www.degruyter.com/view/j/jqas.2011.7.issue-4/1559-0410.1323/1559-0410.1323.xml?format=INT
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baumer Ben S, 2008. "Why On-Base Percentage is a Better Indicator of Future Performance than Batting Average: An Algebraic Proof," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 4(2), pages 1-13, April.
    2. Kaplan David, 2006. "A Variance Decomposition of Individual Offensive Baseball Performance," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 2(3), pages 1-18, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Albert Jim, 2016. "Improved component predictions of batting and pitching measures," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(2), pages 73-85, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:7:y:2011:i:4:n:2. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Peter Golla). General contact details of provider: https://www.degruyter.com .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.