Bayesian bivariate Conway–Maxwell–Poisson regression model for correlated count data in sports
Author
Abstract
Suggested Citation
DOI: 10.1515/jqas-2024-0072
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Seth D. Guikema & Jeremy P. Goffelt, 2008. "A Flexible Count Data Regression Model for Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 28(1), pages 213-223, February.
- Christian Kleiber & Achim Zeileis, 2016.
"Visualizing Count Data Regressions Using Rootograms,"
The American Statistician, Taylor & Francis Journals, vol. 70(3), pages 296-303, July.
- Christian Kleiber & Achim Zeileis, 2014. "Visualizing Count Data Regressions Using Rootograms," Working Papers 2014-20, Faculty of Economics and Statistics, Universität Innsbruck.
- Kleiber, Christian & Zeileis, Achim, 2014. "Visualizing Count Data Regressions Using Rootograms," Working papers 2014/13, Faculty of Business and Economics - University of Basel.
- Galit Shmueli & Thomas P. Minka & Joseph B. Kadane & Sharad Borle & Peter Boatwright, 2005. "A useful distribution for fitting discrete data: revival of the Conway–Maxwell–Poisson distribution," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(1), pages 127-142, January.
- Pettersson-Lidbom, Per & Priks, Mikael, 2010.
"Behavior under social pressure: Empty Italian stadiums and referee bias,"
Economics Letters, Elsevier, vol. 108(2), pages 212-214, August.
- Per Pettersson-Lidbom & Mikael Priks, 2007. "Behavior under Social Pressure: Empty Italian Stadiums and Referee Bias," CESifo Working Paper Series 1960, CESifo.
- M. J. Maher, 1982. "Modelling association football scores," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 36(3), pages 109-118, September.
- J. James Reade & Dominik Schreyer & Carl Singleton, 2022.
"Eliminating supportive crowds reduces referee bias,"
Economic Inquiry, Western Economic Association International, vol. 60(3), pages 1416-1436, July.
- J. James Reade & Dominik Schreyer & Carl Singleton, 2020. "Eliminating supportive crowds reduces referee bias," Economics Discussion Papers em-dp2020-25, Department of Economics, University of Reading, revised 01 Dec 2021.
- Yung-Chin Chiu & Chen-Kang Chang, 2022. "Major League Baseball during the COVID-19 pandemic: does a lack of spectators affect home advantage?," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-6, December.
- Gianluca Baio & Marta Blangiardo, 2010. "Bayesian hierarchical model for the prediction of football results," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(2), pages 253-264.
- Boshnakov, Georgi & Kharrat, Tarak & McHale, Ian G., 2017. "A bivariate Weibull count model for forecasting association football scores," International Journal of Forecasting, Elsevier, vol. 33(2), pages 458-466.
- Michael J. Lopez, 2016. "Persuaded Under Pressure: Evidence From The National Football League," Economic Inquiry, Western Economic Association International, vol. 54(4), pages 1763-1773, October.
- David J. Spiegelhalter & Nicola G. Best & Bradley P. Carlin & Angelika Van Der Linde, 2002. "Bayesian measures of model complexity and fit," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(4), pages 583-639, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Luke S. Benz & Michael J. Lopez, 2023. "Estimating the change in soccer’s home advantage during the Covid-19 pandemic using bivariate Poisson regression," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 107(1), pages 205-232, March.
- Alex Farnell, 2023. "False Start? An Analysis of NFL Penalties With and Without Crowds," Journal of Sports Economics, , vol. 24(6), pages 695-716, August.
- Zhou, Can & Jiao, Yan & Browder, Joan, 2019. "K-aggregated transformation of discrete distributions improves modeling count data with excess ones," Ecological Modelling, Elsevier, vol. 407(C), pages 1-1.
- Alejandro Álvarez & Alejandro Cataldo & Guillermo Durán & Manuel Durán & Pablo Galaz & Iván Monardo & Denis Sauré, 2025. "Data science approach to simulating the FIFA World Cup Qatar 2022 at a website in tribute to Maradona," Computational Statistics, Springer, vol. 40(4), pages 2223-2247, April.
- Gavin A. Whitaker & Ricardo Silva & Daniel Edwards & Ioannis Kosmidis, 2021. "A Bayesian approach for determining player abilities in football," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(1), pages 174-201, January.
- Can Zhou & Yan Jiao & Joan Browder, 2019. "How much do we know about seabird bycatch in pelagic longline fisheries? A simulation study on the potential bias caused by the usually unobserved portion of seabird bycatch," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-19, August.
- Holmes, Benjamin & McHale, Ian G. & Żychaluk, Kamila, 2023. "A Markov chain model for forecasting results of mixed martial arts contests," International Journal of Forecasting, Elsevier, vol. 39(2), pages 623-640.
- Darcy Steeg Morris & Kimberly F. Sellers, 2022. "A Flexible Mixed Model for Clustered Count Data," Stats, MDPI, vol. 5(1), pages 1-18, January.
- Kai Fischer & Justus Haucap, 2022. "Home advantage in professional soccer and betting market efficiency: The role of spectator crowds," Kyklos, Wiley Blackwell, vol. 75(2), pages 294-316, May.
- Chowdhury, Subhasish M. & Jewell, Sarah & Singleton, Carl, 2024.
"Can awareness reduce (and reverse) identity-driven bias in judgement? Evidence from international cricket,"
Journal of Economic Behavior & Organization, Elsevier, vol. 226(C).
- Subhasish M. Chowdhury & Sarah Jewell & Carl Singleton, 2023. "Can Awareness Reduce (and Reverse) Identity-driven Bias in Judgement? Evidence from International Cricket," Economics Discussion Papers em-dp2023-10, Department of Economics, University of Reading.
- Chowdhury, Subhasish M & Jewell, Sarah & Singleton, Carl, 2024. "Can Awareness Reduce (and Reverse) Identity-Driven Bias in Judgement? Evidence from International Cricket," IZA Discussion Papers 16963, Institute of Labor Economics (IZA).
- Subhasish M. Chowdhury & Sarah Jewell & Carl Singleton, 2023. "Can Awareness Reduce (and Reverse) Identity-driven Bias in Judgement? Evidence from International Cricket," Working Papers 2023017, The University of Sheffield, Department of Economics.
- van Ours, Jan C., 2024. "They didn’t know what they got till the crowd was gone," Economics Letters, Elsevier, vol. 236(C).
- Roberto Macrì Demartino & Leonardo Egidi & Nicola Torelli, 2025. "Alternative ranking measures to predict international football results," Computational Statistics, Springer, vol. 40(4), pages 1899-1917, April.
- Jan C. van Ours, 2024. "They didn’t know what they got till the crowd was gone," Tinbergen Institute Discussion Papers 24-014/V, Tinbergen Institute.
- Leonardo Egidi & Nicola Torelli, 2021. "Comparing Goal-Based and Result-Based Approaches in Modelling Football Outcomes," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 156(2), pages 801-813, August.
- Carl Singleton & J. James Reade & Johan Rewilak & Dominik Schreyer, 2021. "How big is home advantage at the Olympic Games?," Economics Discussion Papers em-dp2021-13, Department of Economics, University of Reading.
- da Costa, Igor Barbosa & Marinho, Leandro Balby & Pires, Carlos Eduardo Santos, 2022. "Forecasting football results and exploiting betting markets: The case of “both teams to score”," International Journal of Forecasting, Elsevier, vol. 38(3), pages 895-909.
- Butler, David & Butler, Robert & Singleton, Carl, 2025. "Objective Calls Under the Spotlight: Referee Consistency and Behaviour on Football's Biggest Stage," IZA Discussion Papers 17718, Institute of Labor Economics (IZA).
- Bilal Barakat, 2017. "Generalised count distributions for modelling parity," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 36(26), pages 745-758.
- Kharrat, Tarak & McHale, Ian G. & Peña, Javier López, 2020. "Plus–minus player ratings for soccer," European Journal of Operational Research, Elsevier, vol. 283(2), pages 726-736.
- Wheatcroft, Edward, 2020. "A profitable model for predicting the over/under market in football," LSE Research Online Documents on Economics 103712, London School of Economics and Political Science, LSE Library.
More about this item
Keywords
Conway–Maxwell–Poisson distribution; intractable likelihood; random effects; Markov chain Monte Carlo; soccer and baseball; COVID-19;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:21:y:2025:i:1:p:51-71:n:1004. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyterbrill.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.