IDEAS home Printed from
   My bibliography  Save this article

On modeling panels of time series


  • Philip Hans Franses


This paper reviews research issues in modeling panels of time series. Examples of this type of data are annually observed macroeconomic indicators for all countries in the world, daily returns on the individual stocks listed in the S&P500, and the sales records of all items in a retail store. A panel of time series usually concerns the case where the cross-section dimension and the time dimension are large. Usually, there is no a priori reason to select a few series or to aggregate the series over the cross-section dimension. In that case, however, the use of for example a vector autoregression or other types of multivariate systems becomes cumbersome. Panel models and associated estimation techniques are more useful. This paper discusses representation, estimation and inference in case the data have trends, seasonality, outliers, or nonlinearity. Various examples illustrate the various models.
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Philip Hans Franses, 2006. "On modeling panels of time series," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 60(4), pages 438-456.
  • Handle: RePEc:bla:stanee:v:60:y:2006:i:4:p:438-456

    Download full text from publisher

    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    1. Franses, Philip Hans & Kippers, Jeanine, 2007. "An empirical analysis of euro cash payments," European Economic Review, Elsevier, vol. 51(8), pages 1985-1997, November.
    2. Franses,Philip Hans, 2002. "A Concise Introduction to Econometrics," Cambridge Books, Cambridge University Press, number 9780521520904, March.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Martin Burda & Roman Liesenfeld & Jean-Francois Richard, 2008. "Bayesian Analysis of a Probit Panel Data Model with Unobserved Individual Heterogeneity and Autocorrelated Errors," Working Papers tecipa-321, University of Toronto, Department of Economics.

    More about this item


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:stanee:v:60:y:2006:i:4:p:438-456. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.