IDEAS home Printed from https://ideas.repec.org/a/bla/obuest/v70y2008i5p583-618.html
   My bibliography  Save this article

The ACR Model: A Multivariate Dynamic Mixture Autoregression

Author

Listed:
  • Frédérique Bec
  • Anders Rahbek
  • Neil Shephard

Abstract

This paper proposes and analyses the autoregressive conditional root (ACR) time-series model. This multivariate dynamic mixture autoregression allows for non-stationary epochs. It proves to be an appealing alternative to existing nonlinear models, e.g. the threshold autoregressive or Markov switching class of models, which are commonly used to describe nonlinear dynamics as implied by arbitrage in presence of transaction costs. Simple conditions on the parameters of the ACR process and its innovations are shown to imply geometric ergodicity, stationarity and existence of moments. Furthermore, consistency and asymptotic normality of the maximum likelihood estimators are established. An application to real exchange rate data illustrates the analysis. Copyright (c) Blackwell Publishing Ltd and the Department of Economics, University of Oxford, 2008.

Suggested Citation

  • Frédérique Bec & Anders Rahbek & Neil Shephard, 2008. "The ACR Model: A Multivariate Dynamic Mixture Autoregression," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(5), pages 583-618, October.
  • Handle: RePEc:bla:obuest:v:70:y:2008:i:5:p:583-618
    as

    Download full text from publisher

    File URL: http://www.blackwell-synergy.com/doi/abs/10.1111/j.1468-0084.2008.00512.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Maurice Obstfeld & Kenneth Rogoff, 2001. "The Six Major Puzzles in International Macroeconomics: Is There a Common Cause?," NBER Chapters,in: NBER Macroeconomics Annual 2000, Volume 15, pages 339-412 National Bureau of Economic Research, Inc.
    2. Bollerslev, Tim & Engle, Robert F, 1993. "Common Persistence in Conditional Variances," Econometrica, Econometric Society, vol. 61(1), pages 167-186, January.
    3. Balke, Nathan S & Fomby, Thomas B, 1997. "Threshold Cointegration," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 38(3), pages 627-645, August.
    4. Hansen, Bruce E. & Seo, Byeongseon, 2002. "Testing for two-regime threshold cointegration in vector error-correction models," Journal of Econometrics, Elsevier, vol. 110(2), pages 293-318, October.
    5. Michael, Panos & Nobay, A Robert & Peel, David A, 1997. "Transactions Costs and Nonlinear Adjustment in Real Exchange Rates: An Empirical Investigation," Journal of Political Economy, University of Chicago Press, vol. 105(4), pages 862-879, August.
    6. Kilian, Lutz & Taylor, Mark P., 2003. "Why is it so difficult to beat the random walk forecast of exchange rates?," Journal of International Economics, Elsevier, vol. 60(1), pages 85-107, May.
    7. Ruud, Paul A., 1991. "Extensions of estimation methods using the EM algorithm," Journal of Econometrics, Elsevier, vol. 49(3), pages 305-341, September.
    8. Kenneth Rogoff, 1996. "The Purchasing Power Parity Puzzle," Journal of Economic Literature, American Economic Association, vol. 34(2), pages 647-668, June.
    9. Saikkonen, Pentti, 2005. "Stability results for nonlinear error correction models," Journal of Econometrics, Elsevier, vol. 127(1), pages 69-81, July.
    10. Gourieroux, Christian & Robert, Christian Y., 2006. "Stochastic Unit Root Models," Econometric Theory, Cambridge University Press, vol. 22(06), pages 1052-1090, December.
    11. Hall, Stephen G & Psaradakis, Zacharias & Sola, Martin, 1999. "Detecting Periodically Collapsing Bubbles: A Markov-Switching Unit Root Test," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 14(2), pages 143-154, March-Apr.
    12. Enders, Walter & Siklos, Pierre L, 2001. "Cointegration and Threshold Adjustment," Journal of Business & Economic Statistics, American Statistical Association, vol. 19(2), pages 166-176, April.
    13. Sangjoon Kim & Neil Shephard & Siddhartha Chib, 1998. "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models," Review of Economic Studies, Oxford University Press, vol. 65(3), pages 361-393.
    14. Goldfeld, Stephen M. & Quandt, Richard E., 1973. "A Markov model for switching regressions," Journal of Econometrics, Elsevier, vol. 1(1), pages 3-15, March.
    15. Obstfeld, Maurice & Taylor, Alan M., 1997. "Nonlinear Aspects of Goods-Market Arbitrage and Adjustment: Heckscher's Commodity Points Revisited," Journal of the Japanese and International Economies, Elsevier, vol. 11(4), pages 441-479, December.
    16. Dumas, Bernard, 1992. "Dynamic Equilibrium and the Real Exchange Rate in a Spatially Separated World," Review of Financial Studies, Society for Financial Studies, vol. 5(2), pages 153-180.
    17. Robert B. Davies, 2002. "Hypothesis testing when a nuisance parameter is present only under the alternative: Linear model case," Biometrika, Biometrika Trust, vol. 89(2), pages 484-489, June.
    18. Anderson, Heather M, 1997. "Transaction Costs and Non-linear Adjustment towards Equilibrium in the US Treasury Bill Market," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 59(4), pages 465-484, November.
    19. Robert F. Engle & Aaron D. Smith, 1999. "Stochastic Permanent Breaks," The Review of Economics and Statistics, MIT Press, vol. 81(4), pages 553-574, November.
    20. C. S. Wong & W. K. Li, 2000. "On a mixture autoregressive model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 62(1), pages 95-115.
    21. Bec, Frederique & Guay, Alain & Guerre, Emmanuel, 2008. "Adaptive consistent unit-root tests based on autoregressive threshold model," Journal of Econometrics, Elsevier, vol. 142(1), pages 94-133, January.
    22. Jensen, S ren Tolver & Rahbek, Anders, 2007. "On The Law Of Large Numbers For (Geometrically) Ergodic Markov Chains," Econometric Theory, Cambridge University Press, vol. 23(04), pages 761-766, August.
    23. Granger, Clive W. J. & Swanson, Norman R., 1997. "An introduction to stochastic unit-root processes," Journal of Econometrics, Elsevier, vol. 80(1), pages 35-62, September.
    24. Enders, Walter & Granger, Clive W J, 1998. "Unit-Root Tests and Asymmetric Adjustment with an Example Using the Term Structure of Interest Rates," Journal of Business & Economic Statistics, American Statistical Association, vol. 16(3), pages 304-311, July.
    25. Mehmet Caner & Bruce E. Hansen, 2001. "Threshold Autoregression with a Unit Root," Econometrica, Econometric Society, vol. 69(6), pages 1555-1596, November.
    26. Zhiqiang Zhang & Wai Keung Li & Kam Chuen Yuen, 2006. "On a Mixture GARCH Time-Series Model," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(4), pages 577-597, July.
    27. Frederic Bec & Melika Ben Salem & Marine Carrasco, 2004. "Tests for Unit-Root versus Threshold Specification With an Application to the Purchasing Power Parity Relationship," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 382-395, October.
    28. Sercu, Piet & Uppal, Raman & Van Hulle, Cynthia, 1995. " The Exchange Rate in the Presence of Transaction Costs: Implications for Tests of Purchasing Power Parity," Journal of Finance, American Finance Association, vol. 50(4), pages 1309-1319, September.
    29. Frédérique Bec & Anders Rahbek, 2004. "Vector equilibrium correction models with non-linear discontinuous adjustments," Econometrics Journal, Royal Economic Society, vol. 7(2), pages 628-651, December.
    30. Carrasco, Marine & Chen, Xiaohong, 2002. "Mixing And Moment Properties Of Various Garch And Stochastic Volatility Models," Econometric Theory, Cambridge University Press, vol. 18(01), pages 17-39, February.
    31. Wong C.S. & Li W.K., 2001. "On a Mixture Autoregressive Conditional Heteroscedastic Model," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 982-995, September.
    32. Berka, Martin, 2005. "General Equilibrium Model of Arbitrage Trade and Real Exchange Rate Persistence," MPRA Paper 234, University Library of Munich, Germany.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Leena Kalliovirta & Mika Meitz & Pentti Saikkonen, 2015. "A Gaussian Mixture Autoregressive Model for Univariate Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 36(2), pages 247-266, March.
    2. Søren Johansen & Theis Lange, 2011. "Some econometric results for the Blanchard-Watson bubble model," CREATES Research Papers 2011-17, Department of Economics and Business Economics, Aarhus University.
    3. Gao, Jiti & Tjøstheim, Dag & Yin, Jiying, 2013. "Estimation in threshold autoregressive models with a stationary and a unit root regime," Journal of Econometrics, Elsevier, vol. 172(1), pages 1-13.
    4. F Blasques & P Gorgi & S Koopman & O Wintenberger, 2016. "Feasible Invertibility Conditions for Maximum Likelihood Estimation for Observation-Driven Models ," Working Papers hal-01377971, HAL.
    5. Kalliovirta, Leena & Meitz, Mika & Saikkonen, Pentti, 2016. "Gaussian mixture vector autoregression," Journal of Econometrics, Elsevier, vol. 192(2), pages 485-498.
    6. Jan Pablo Burgard & Matthias Neuenkirch & Matthias Nöckel, 2016. "State-Dependent Transmission of Monetary Policy in the Euro Area," Research Papers in Economics 2016-15, University of Trier, Department of Economics.
    7. Koop, Gary & Potter, Simon, 2010. "A flexible approach to parametric inference in nonlinear and time varying time series models," Journal of Econometrics, Elsevier, vol. 159(1), pages 134-150, November.
    8. Ching-Wai (Jeremy) Chiu & Haroon Mumtaz & Gabor Pinter, 2016. "Bayesian Vector Autoregressions with Non-Gaussian Shocks," CReMFi Discussion Papers 5, CReMFi, School of Economics and Finance, QMUL.
    9. Nielsen, Heino Bohn & Rahbek, Anders, 2014. "Unit root vector autoregression with volatility induced stationarity," Journal of Empirical Finance, Elsevier, vol. 29(C), pages 144-167.
    10. Dias, José G. & Vermunt, Jeroen K. & Ramos, Sofia, 2015. "Clustering financial time series: New insights from an extended hidden Markov model," European Journal of Operational Research, Elsevier, vol. 243(3), pages 852-864.
    11. Anders Rahbek & Heino Bohn Nielsen, 2012. "Unit Root Vector Autoregression with volatility Induced Stationarity," CREATES Research Papers 2012-29, Department of Economics and Business Economics, Aarhus University.
    12. Deborah Gefang, 2012. "Money‐output Causality Revisited – A Bayesian Logistic Smooth Transition VECM Perspective," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 74(1), pages 131-151, February.
    13. Dueker, Michael J. & Psaradakis, Zacharias & Sola, Martin & Spagnolo, Fabio, 2011. "Multivariate contemporaneous-threshold autoregressive models," Journal of Econometrics, Elsevier, vol. 160(2), pages 311-325, February.
    14. Line Elvstrøm Ekner & Emil Nejstgaard, 2013. "Parameter Identification in the Logistic STAR Model," Discussion Papers 13-07, University of Copenhagen. Department of Economics.
    15. Adusei Jumah & Robert M. Kunst, 2016. "Optimizing time-series forecasts for inflation and interest rates using simulation and model averaging," Applied Economics, Taylor & Francis Journals, vol. 48(45), pages 4366-4378, September.
    16. Francisco Blasques & Paolo Gorgi & Siem Jan Koopman & Olivier Wintenberger, 2016. "Feasible Invertibility Conditions and Maximum Likelihood Estimation for Observation-Driven Models," Tinbergen Institute Discussion Papers 16-082/III, Tinbergen Institute.
    17. Daiki Maki, 2013. "Detecting cointegration relationships under nonlinear models: Monte Carlo analysis and some applications," Empirical Economics, Springer, vol. 45(1), pages 605-625, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:obuest:v:70:y:2008:i:5:p:583-618. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley Content Delivery) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/sfeixuk.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.