IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v179y2016i4p951-974.html
   My bibliography  Save this article

A quasi-Monte-Carlo comparison of parametric and semiparametric regression methods for heavy-tailed and non-normal data: an application to healthcare costs

Author

Listed:
  • Andrew M. Jones
  • James Lomas
  • Peter T. Moore
  • Nigel Rice

Abstract

No abstract is available for this item.

Suggested Citation

  • Andrew M. Jones & James Lomas & Peter T. Moore & Nigel Rice, 2016. "A quasi-Monte-Carlo comparison of parametric and semiparametric regression methods for heavy-tailed and non-normal data: an application to healthcare costs," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(4), pages 951-974, October.
  • Handle: RePEc:bla:jorssa:v:179:y:2016:i:4:p:951-974
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssa.12141
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Holly, Alberto & Monfort, Alain & Rockinger, Michael, 2011. "Fourth order pseudo maximum likelihood methods," Journal of Econometrics, Elsevier, vol. 162(2), pages 278-293, June.
    2. Gilleskie, Donna B. & Mroz, Thomas A., 2004. "A flexible approach for estimating the effects of covariates on health expenditures," Journal of Health Economics, Elsevier, vol. 23(2), pages 391-418, March.
    3. James J. Heckman, 2001. "Micro Data, Heterogeneity, and the Evaluation of Public Policy: Nobel Lecture," Journal of Political Economy, University of Chicago Press, vol. 109(4), pages 673-748, August.
    4. Cummins, J. David & Dionne, Georges & McDonald, James B. & Pritchett, B. Michael, 1990. "Applications of the GB2 family of distributions in modeling insurance loss processes," Insurance: Mathematics and Economics, Elsevier, vol. 9(4), pages 257-272, December.
    5. Andrew M. Jones & James Lomas & Nigel Rice, 2014. "Applying Beta‚ÄźType Size Distributions To Healthcare Cost Regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(4), pages 649-670, June.
    6. Manning, W. G. & Duan, N. & Rogers, W. H., 1987. "Monte Carlo evidence on the choice between sample selection and two-part models," Journal of Econometrics, Elsevier, vol. 35(1), pages 59-82, May.
    7. Johnson, Elizabeth & Dominici, Francesca & Griswold, Michael & L. Zeger, Scott, 2003. "Disease cases and their medical costs attributable to smoking: an analysis of the national medical expenditure survey," Journal of Econometrics, Elsevier, vol. 112(1), pages 135-151, January.
    8. Manning, Willard G. & Basu, Anirban & Mullahy, John, 2005. "Generalized modeling approaches to risk adjustment of skewed outcomes data," Journal of Health Economics, Elsevier, vol. 24(3), pages 465-488, May.
    9. Steven C. Hill & G. Edward Miller, 2010. "Health expenditure estimation and functional form: applications of the generalized gamma and extended estimating equations models," Health Economics, John Wiley & Sons, Ltd., vol. 19(5), pages 608-627.
    10. Anirban Basu & Bhakti V. Arondekar & Paul J. Rathouz, 2006. "Scale of interest versus scale of estimation: comparing alternative estimators for the incremental costs of a comorbidity," Health Economics, John Wiley & Sons, Ltd., vol. 15(10), pages 1091-1107.
    11. James B. Mcdonald & Jeff Sorensen & Patrick A. Turley, 2013. "Skewness And Kurtosis Properties Of Income Distribution Models," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 59(2), pages 360-374, June.
    12. repec:hal:journl:peer-00815562 is not listed on IDEAS
    13. Andrew M. Jones & James Lomas & Nigel Rice, 2015. "Healthcare Cost Regressions: Going Beyond the Mean to Estimate the Full Distribution," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1192-1212, September.
    14. Mullahy, John, 1997. "Heterogeneity, Excess Zeros, and the Structure of Count Data Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(3), pages 337-350, May-June.
    15. Duan, Naihua, et al, 1983. "A Comparison of Alternative Models for the Demand for Medical Care," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 115-126, April.
    16. Cawley, John & Meyerhoefer, Chad, 2012. "The medical care costs of obesity: An instrumental variables approach," Journal of Health Economics, Elsevier, vol. 31(1), pages 219-230.
    17. Jeffrey S. Hoch & Andrew H. Briggs & Andrew R. Willan, 2002. "Something old, something new, something borrowed, something blue: a framework for the marriage of health econometrics and cost-effectiveness analysis," Health Economics, John Wiley & Sons, Ltd., vol. 11(5), pages 415-430.
    18. Blough, David K. & Madden, Carolyn W. & Hornbrook, Mark C., 1999. "Modeling risk using generalized linear models," Journal of Health Economics, Elsevier, vol. 18(2), pages 153-171, April.
    19. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    20. Arrow, Kenneth J & Lind, Robert C, 1970. "Uncertainty and the Evaluation of Public Investment Decisions," American Economic Review, American Economic Association, vol. 60(3), pages 364-378, June.
    21. Han, Aaron & Hausman, Jerry A, 1990. "Flexible Parametric Estimation of Duration and Competing Risk Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(1), pages 1-28, January-M.
    22. Borislava Mihaylova & Andrew Briggs & Anthony O'Hagan & Simon G. Thompson, 2011. "Review of statistical methods for analysing healthcare resources and costs," Health Economics, John Wiley & Sons, Ltd., vol. 20(8), pages 897-916, August.
    23. Anirban Basu & Willard G. Manning & John Mullahy, 2004. "Comparing alternative models: log vs Cox proportional hazard?," Health Economics, John Wiley & Sons, Ltd., vol. 13(8), pages 749-765.
    24. Deb, Partha & Trivedi, Pravin K, 1997. "Demand for Medical Care by the Elderly: A Finite Mixture Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(3), pages 313-336, May-June.
    25. Buntin, Melinda Beeuwkes & Zaslavsky, Alan M., 2004. "Too much ado about two-part models and transformation?: Comparing methods of modeling Medicare expenditures," Journal of Health Economics, Elsevier, vol. 23(3), pages 525-542, May.
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:179:y:2016:i:4:p:951-974. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum). General contact details of provider: http://edirc.repec.org/data/rssssea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.