IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v179y2016i4p951-974.html
   My bibliography  Save this article

A quasi-Monte-Carlo comparison of parametric and semiparametric regression methods for heavy-tailed and non-normal data: an application to healthcare costs

Author

Listed:
  • Andrew M. Jones
  • James Lomas
  • Peter T. Moore
  • Nigel Rice

Abstract

No abstract is available for this item.

Suggested Citation

  • Andrew M. Jones & James Lomas & Peter T. Moore & Nigel Rice, 2016. "A quasi-Monte-Carlo comparison of parametric and semiparametric regression methods for heavy-tailed and non-normal data: an application to healthcare costs," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(4), pages 951-974, October.
  • Handle: RePEc:bla:jorssa:v:179:y:2016:i:4:p:951-974
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1111/rssa.12141
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Holly, Alberto & Monfort, Alain & Rockinger, Michael, 2011. "Fourth order pseudo maximum likelihood methods," Journal of Econometrics, Elsevier, vol. 162(2), pages 278-293, June.
    2. Gilleskie, Donna B. & Mroz, Thomas A., 2004. "A flexible approach for estimating the effects of covariates on health expenditures," Journal of Health Economics, Elsevier, vol. 23(2), pages 391-418, March.
    3. Cummins, J. David & Dionne, Georges & McDonald, James B. & Pritchett, B. Michael, 1990. "Applications of the GB2 family of distributions in modeling insurance loss processes," Insurance: Mathematics and Economics, Elsevier, vol. 9(4), pages 257-272, December.
    4. Andrew M. Jones & James Lomas & Nigel Rice, 2014. "Applying Beta‐Type Size Distributions To Healthcare Cost Regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(4), pages 649-670, June.
    5. Manning, W. G. & Duan, N. & Rogers, W. H., 1987. "Monte Carlo evidence on the choice between sample selection and two-part models," Journal of Econometrics, Elsevier, vol. 35(1), pages 59-82, May.
    6. Johnson, Elizabeth & Dominici, Francesca & Griswold, Michael & L. Zeger, Scott, 2003. "Disease cases and their medical costs attributable to smoking: an analysis of the national medical expenditure survey," Journal of Econometrics, Elsevier, vol. 112(1), pages 135-151, January.
    7. Manning, Willard G. & Basu, Anirban & Mullahy, John, 2005. "Generalized modeling approaches to risk adjustment of skewed outcomes data," Journal of Health Economics, Elsevier, vol. 24(3), pages 465-488, May.
    8. James B. Mcdonald & Jeff Sorensen & Patrick A. Turley, 2013. "Skewness And Kurtosis Properties Of Income Distribution Models," Review of Income and Wealth, International Association for Research in Income and Wealth, vol. 59(2), pages 360-374, June.
    9. Andrew M. Jones & James Lomas & Nigel Rice, 2015. "Healthcare Cost Regressions: Going Beyond the Mean to Estimate the Full Distribution," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1192-1212, September.
    10. Mullahy, John, 1997. "Heterogeneity, Excess Zeros, and the Structure of Count Data Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(3), pages 337-350, May-June.
    11. Jeffrey S. Hoch & Andrew H. Briggs & Andrew R. Willan, 2002. "Something old, something new, something borrowed, something blue: a framework for the marriage of health econometrics and cost‐effectiveness analysis," Health Economics, John Wiley & Sons, Ltd., vol. 11(5), pages 415-430, July.
    12. Partha Deb & James F. Burgess, Jr., 2003. "A Quasi-experimental Comparison of Econometric Models for Health Care Expenditures," Economics Working Paper Archive at Hunter College 212, Hunter College Department of Economics.
    13. Han, Aaron & Hausman, Jerry A, 1990. "Flexible Parametric Estimation of Duration and Competing Risk Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 5(1), pages 1-28, January-M.
    14. Anirban Basu & Willard G. Manning & John Mullahy, 2004. "Comparing alternative models: log vs Cox proportional hazard?," Health Economics, John Wiley & Sons, Ltd., vol. 13(8), pages 749-765, August.
    15. Deb, Partha & Trivedi, Pravin K, 1997. "Demand for Medical Care by the Elderly: A Finite Mixture Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 12(3), pages 313-336, May-June.
    16. Buntin, Melinda Beeuwkes & Zaslavsky, Alan M., 2004. "Too much ado about two-part models and transformation?: Comparing methods of modeling Medicare expenditures," Journal of Health Economics, Elsevier, vol. 23(3), pages 525-542, May.
    17. James J. Heckman, 2001. "Micro Data, Heterogeneity, and the Evaluation of Public Policy: Nobel Lecture," Journal of Political Economy, University of Chicago Press, vol. 109(4), pages 673-748, August.
    18. Steven C. Hill & G. Edward Miller, 2010. "Health expenditure estimation and functional form: applications of the generalized gamma and extended estimating equations models," Health Economics, John Wiley & Sons, Ltd., vol. 19(5), pages 608-627, May.
    19. Anirban Basu & Bhakti V. Arondekar & Paul J. Rathouz, 2006. "Scale of interest versus scale of estimation: comparing alternative estimators for the incremental costs of a comorbidity," Health Economics, John Wiley & Sons, Ltd., vol. 15(10), pages 1091-1107, October.
    20. repec:hal:journl:peer-00815562 is not listed on IDEAS
    21. Kenneth J. Arrow & Robert C. Lind, 1974. "Uncertainty and the Evaluation of Public Investment Decisions," Palgrave Macmillan Books, in: Chennat Gopalakrishnan (ed.), Classic Papers in Natural Resource Economics, chapter 3, pages 54-75, Palgrave Macmillan.
    22. Duan, Naihua, et al, 1983. "A Comparison of Alternative Models for the Demand for Medical Care," Journal of Business & Economic Statistics, American Statistical Association, vol. 1(2), pages 115-126, April.
    23. Cawley, John & Meyerhoefer, Chad, 2012. "The medical care costs of obesity: An instrumental variables approach," Journal of Health Economics, Elsevier, vol. 31(1), pages 219-230.
    24. Blough, David K. & Madden, Carolyn W. & Hornbrook, Mark C., 1999. "Modeling risk using generalized linear models," Journal of Health Economics, Elsevier, vol. 18(2), pages 153-171, April.
    25. Huber, Martin & Lechner, Michael & Wunsch, Conny, 2013. "The performance of estimators based on the propensity score," Journal of Econometrics, Elsevier, vol. 175(1), pages 1-21.
    26. Borislava Mihaylova & Andrew Briggs & Anthony O'Hagan & Simon G. Thompson, 2011. "Review of statistical methods for analysing healthcare resources and costs," Health Economics, John Wiley & Sons, Ltd., vol. 20(8), pages 897-916, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Anika Reichert & Rowena Jacobs, 2018. "The impact of waiting time on patient outcomes: Evidence from early intervention in psychosis services in England," Health Economics, John Wiley & Sons, Ltd., vol. 27(11), pages 1772-1787, November.
    2. Yi Yao & Joan Schmit & Julie Shi, 2019. "Promoting sustainability for micro health insurance: a risk-adjusted subsidy approach for maternal healthcare service," The Geneva Papers on Risk and Insurance - Issues and Practice, Palgrave Macmillan;The Geneva Association, vol. 44(3), pages 382-409, July.
    3. Alexandre Vimont & Henri Leleu & Isabelle Durand-Zaleski, 2022. "Machine learning versus regression modelling in predicting individual healthcare costs from a representative sample of the nationwide claims database in France," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 23(2), pages 211-223, March.
    4. Tuukka Holster & Shaoxiong Ji & Pekka Marttinen, 2024. "Risk adjustment for regional healthcare funding allocations with ensemble methods: an empirical study and interpretation," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 25(7), pages 1117-1131, September.
    5. Longden, Thomas & Wong, Chun Yee & Haywood, Philip & Hall, Jane & van Gool, Kees, 2018. "The prevalence of persistence and related health status: An analysis of persistently high healthcare costs in the short term and medium term," Social Science & Medicine, Elsevier, vol. 211(C), pages 147-156.
    6. Julie Shi & Yi Yao & Gordon Liu, 2018. "Modeling individual health care expenditures in China: Evidence to assist payment reform in public insurance," Health Economics, John Wiley & Sons, Ltd., vol. 27(12), pages 1945-1962, December.
    7. Sriubaite, I. & Harris, A. & Jones, A.M. & Gabbe, B., 2020. "Economic Consequences of Road Traffic Injuries. Application of the Super Learner algorithm," Health, Econometrics and Data Group (HEDG) Working Papers 20/20, HEDG, c/o Department of Economics, University of York.
    8. Sungchul Park & Anirban Basu, 2018. "Alternative evaluation metrics for risk adjustment methods," Health Economics, John Wiley & Sons, Ltd., vol. 27(6), pages 984-1010, June.
    9. Elena Arroyo-Borrell & Gemma Renart-Vicens & Marc Saez & Marc Carreras, 2017. "Hospital Costs of Foreign Non-Resident Patients: A Comparative Analysis in Catalonia, Spain," IJERPH, MDPI, vol. 14(9), pages 1-13, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jones, A. & Lomas, J. & Rice, N., 2014. "Going Beyond the Mean in Healthcare Cost Regressions: a Comparison of Methods for Estimating the Full Conditional Distribution," Health, Econometrics and Data Group (HEDG) Working Papers 14/26, HEDG, c/o Department of Economics, University of York.
    2. Andrew M. Jones & James Lomas & Nigel Rice, 2015. "Healthcare Cost Regressions: Going Beyond the Mean to Estimate the Full Distribution," Health Economics, John Wiley & Sons, Ltd., vol. 24(9), pages 1192-1212, September.
    3. Borislava Mihaylova & Andrew Briggs & Anthony O'Hagan & Simon G. Thompson, 2011. "Review of statistical methods for analysing healthcare resources and costs," Health Economics, John Wiley & Sons, Ltd., vol. 20(8), pages 897-916, August.
    4. Jones, A.M, 2010. "Models For Health Care," Health, Econometrics and Data Group (HEDG) Working Papers 10/01, HEDG, c/o Department of Economics, University of York.
    5. Sungchul Park & Anirban Basu, 2018. "Alternative evaluation metrics for risk adjustment methods," Health Economics, John Wiley & Sons, Ltd., vol. 27(6), pages 984-1010, June.
    6. Andrew M. Jones & James Lomas & Nigel Rice, 2014. "Applying Beta‐Type Size Distributions To Healthcare Cost Regressions," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(4), pages 649-670, June.
    7. Kasteridis, Panagiotis & Rice, Nigel & Santos, Rita, 2022. "Heterogeneity in end of life health care expenditure trajectory profiles," Journal of Economic Behavior & Organization, Elsevier, vol. 204(C), pages 221-251.
    8. Toni Mora & Joan Gil & Antoni Sicras-Mainar, 2012. "The Influence of BMI, Obesity and Overweight on Medical Costs: A Panel Data Approach," Working Papers 2012-08, FEDEA.
    9. Besstremyannaya, Galina, 2017. "Measuring income equity in the demand for healthcare with finite mixture models," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 46, pages 5-29.
    10. Toni Mora & Joan Gil & Antoni Sicras-Mainar, 2012. "The Influence of BMI, Obesity and Overweight on Medical Costs: A Panel Data Approach," Working Papers 2012-08, FEDEA.
    11. Toni Mora & Joan Gil & Antoni Sicras-Mainar, 2015. "The influence of obesity and overweight on medical costs: a panel data perspective," The European Journal of Health Economics, Springer;Deutsche Gesellschaft für Gesundheitsökonomie (DGGÖ), vol. 16(2), pages 161-173, March.
    12. Galina Besstremyannaya, 2012. "Estimating income equity in social health insurance system," Working Papers w0172, New Economic School (NES).
    13. Caravaggio, Nicola & Resce, Giuliano, 2023. "Enhancing Healthcare Cost Forecasting: A Machine Learning Model for Resource Allocation in Heterogeneous Regions," Economics & Statistics Discussion Papers esdp23090, University of Molise, Department of Economics.
    14. Manos Matsaganis & Theodore Mitrakos & Panos Tsakloglou, 2008. "Modelling Household Expenditure on Health Care in Greece," Working Papers 68, Bank of Greece.
    15. Sriubaite, I. & Harris, A. & Jones, A.M. & Gabbe, B., 2020. "Economic Consequences of Road Traffic Injuries. Application of the Super Learner algorithm," Health, Econometrics and Data Group (HEDG) Working Papers 20/20, HEDG, c/o Department of Economics, University of York.
    16. Steven C. Hill & G. Edward Miller, 2010. "Health expenditure estimation and functional form: applications of the generalized gamma and extended estimating equations models," Health Economics, John Wiley & Sons, Ltd., vol. 19(5), pages 608-627, May.
    17. Julie Shi & Yi Yao & Gordon Liu, 2018. "Modeling individual health care expenditures in China: Evidence to assist payment reform in public insurance," Health Economics, John Wiley & Sons, Ltd., vol. 27(12), pages 1945-1962, December.
    18. Noémi Kreif & Richard Grieve & M. Zia Sadique, 2013. "Statistical Methods For Cost‐Effectiveness Analyses That Use Observational Data: A Critical Appraisal Tool And Review Of Current Practice," Health Economics, John Wiley & Sons, Ltd., vol. 22(4), pages 486-500, April.
    19. Keane, Michael & Stavrunova, Olena, 2016. "Adverse selection, moral hazard and the demand for Medigap insurance," Journal of Econometrics, Elsevier, vol. 190(1), pages 62-78.
    20. Tor Iversen & Eline Aas & Gunnar Rosenqvist & Unto Häkkinen & on behalf of the EuroHOPE study group, 2015. "Comparative Analysis of Treatment Costs in EUROHOPE," Health Economics, John Wiley & Sons, Ltd., vol. 24(S2), pages 5-22, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:179:y:2016:i:4:p:951-974. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.