IDEAS home Printed from https://ideas.repec.org/a/bla/jorssa/v167y2004i2p309-322.html
   My bibliography  Save this article

Bayesian networks for imputation

Author

Listed:
  • Marco Di Zio
  • Mauro Scanu
  • Lucia Coppola
  • Orietta Luzi
  • Alessandra Ponti

Abstract

Summary. Bayesian networks are particularly useful for dealing with high dimensional statistical problems. They allow a reduction in the complexity of the phenomenon under study by representing joint relationships between a set of variables through conditional relationships between subsets of these variables. Following Thibaudeau and Winkler we use Bayesian networks for imputing missing values. This method is introduced to deal with the problem of the consistency of imputed values: preservation of statistical relationships between variables (statistical consistency) and preservation of logical constraints in data (logical consistency). We perform some experiments on a subset of anonymous individual records from the 1991 UK population census.

Suggested Citation

  • Marco Di Zio & Mauro Scanu & Lucia Coppola & Orietta Luzi & Alessandra Ponti, 2004. "Bayesian networks for imputation," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 167(2), pages 309-322, May.
  • Handle: RePEc:bla:jorssa:v:167:y:2004:i:2:p:309-322
    DOI: 10.1046/j.1467-985X.2003.00736.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1046/j.1467-985X.2003.00736.x
    Download Restriction: no

    File URL: https://libkey.io/10.1046/j.1467-985X.2003.00736.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lauritzen, Steffen L., 1995. "The EM algorithm for graphical association models with missing data," Computational Statistics & Data Analysis, Elsevier, vol. 19(2), pages 191-201, February.
    2. A. P. Dawid & J. Mortera & V. L. Pascali & D. Van Boxel, 2002. "Probabilistic Expert Systems for Forensic Inference from Genetic Markers," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 29(4), pages 577-595, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rosa Aghdam & Mojtaba Ganjali & Parisa Niloofar & Changiz Eslahchi, 2016. "Inferring gene regulatory networks by an order independent algorithm using incomplete data sets," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(5), pages 893-913, April.
    2. Pilar Rey del Castillo & Jaime Villanueva-Garcia, 2018. "Linking Tax Morale and Personal Income Tax in Spain," CESifo Working Paper Series 7218, CESifo.
    3. Daniela Marella & Paola Vicard, 2022. "Bayesian network structural learning from complex survey data: a resampling based approach," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(4), pages 981-1013, October.
    4. Coutinho Wieger & Waal Ton de & Shlomo Natalie, 2013. "Calibrated Hot-Deck Donor Imputation Subject to Edit Restrictions," Journal of Official Statistics, Sciendo, vol. 29(2), pages 299-321, September.
    5. Lidia Ceriani & Chiara Gigliarano, 2020. "Multidimensional Well-Being: A Bayesian Networks Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 152(1), pages 237-263, November.
    6. Whittaker, Gerald & Färe, Rolf & Grosskopf, Shawna & Barnhart, Bradley & Bostian, Moriah & Mueller-Warrant, George & Griffith, Stephen, 2017. "Spatial targeting of agri-environmental policy using bilevel evolutionary optimization," Omega, Elsevier, vol. 66(PA), pages 15-27.
    7. Rancoita, Paola M.V. & Zaffalon, Marco & Zucca, Emanuele & Bertoni, Francesco & de Campos, Cassio P., 2016. "Bayesian network data imputation with application to survival tree analysis," Computational Statistics & Data Analysis, Elsevier, vol. 93(C), pages 373-387.
    8. Daniela Marella, 2018. "Pc Complex: Pc Algorithm For Complex Survey Data," Departmental Working Papers of Economics - University 'Roma Tre' 0240, Department of Economics - University Roma Tre.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuroda, Masahiro & Sakakihara, Michio & Geng, Zhi, 2008. "Acceleration of the EM and ECM algorithms using the Aitken [delta]2 method for log-linear models with partially classified data," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2332-2338, October.
    2. Chen, Yen-Liang & Hu, Hui-Ling, 2006. "An overlapping cluster algorithm to provide non-exhaustive clustering," European Journal of Operational Research, Elsevier, vol. 173(3), pages 762-780, September.
    3. Croft, J. & Smith, J. Q., 2003. "Discrete mixtures in Bayesian networks with hidden variables: a latent time budget example," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 539-547, January.
    4. Fazia Abdat & Sylvie Leclercq & Xavier Cuny & Claire Tissot, 2014. "Extracting recurrent scenarios from narrative texts using a Bayesian network: Application to serious occupational accidents with movement disturbance," Post-Print hal-01578382, HAL.
    5. Arentze, Theo & Timmermans, Harry, 2009. "Regimes in social-cultural events-driven activity sequences: Modelling approach and empirical application," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(4), pages 311-322, May.
    6. Langseth, Helge & Portinale, Luigi, 2007. "Bayesian networks in reliability," Reliability Engineering and System Safety, Elsevier, vol. 92(1), pages 92-108.
    7. Christopher Raphael, 2003. "Bayesian Networks with Degenerate Gaussian Distributions," Methodology and Computing in Applied Probability, Springer, vol. 5(2), pages 235-263, June.
    8. Esma Nur Cinicioglu & Gül Huyugüzel Kışla & A. Özlem Önder & Y. Gülnur Muradoğlu, 2024. "The Changing Behavior of the European Credit Default Swap Spreads During the Covid-19 Pandemic: A Bayesian Network Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 63(3), pages 1213-1254, March.
    9. Yi Cao & Xiaoquan Liu & Jia Zhai & Shan Hua, 2022. "A two‐stage Bayesian network model for corporate bankruptcy prediction," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 27(1), pages 455-472, January.
    10. Hongyu Wang & Jian Tang & Pengpeng Xu & Rundong Chen & Haona Yao, 2022. "Research on the Influence Mechanism of Street Vitality in Mountainous Cities Based on a Bayesian Network: A Case Study of the Main Urban Area of Chongqing," Land, MDPI, vol. 11(5), pages 1-22, May.
    11. Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2013. "Modeling Differential Item Functioning Using a Generalization of the Multiple-Group Bifactor Model," Journal of Educational and Behavioral Statistics, , vol. 38(1), pages 32-60, February.
    12. Fabio Corradi & Federico Ricciardi, 2013. "Evaluation of kinship identification systems based on short tandem repeat DNA profiles," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(5), pages 649-668, November.
    13. Claudia Tarantola & Paola Vicard & Ioannis Ntzoufras, 2012. "Monitoring and Improving Greek Banking Services Using Bayesian Networks: an Analysis of Mystery Shopping Data," Quaderni di Dipartimento 160, University of Pavia, Department of Economics and Quantitative Methods.
    14. Cowell, Robert G., 2009. "Efficient maximum likelihood pedigree reconstruction," Theoretical Population Biology, Elsevier, vol. 76(4), pages 285-291.
    15. Silvia Salini & Ron Kenett, 2009. "Bayesian networks of customer satisfaction survey data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(11), pages 1177-1189.
    16. Sheehan, Barry & Murphy, Finbarr & Mullins, Martin & Ryan, Cian, 2019. "Connected and autonomous vehicles: A cyber-risk classification framework," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 523-536.
    17. Sheehan, Nuala A. & Bartlett, Mark & Cussens, James, 2014. "Improved maximum likelihood reconstruction of complex multi-generational pedigrees," Theoretical Population Biology, Elsevier, vol. 97(C), pages 11-19.
    18. Astrid Kemperman & Pauline van den Berg & Minou Weijs-Perrée & Kevin Uijtdewillegen, 2019. "Loneliness of Older Adults: Social Network and the Living Environment," IJERPH, MDPI, vol. 16(3), pages 1-16, January.
    19. Yawen Sun & Shaohua Tan & Qixiao He & Jize Shen, 2022. "Influence Mechanisms of Community Sports Parks to Enhance Social Interaction: A Bayesian Belief Network Analysis," IJERPH, MDPI, vol. 19(3), pages 1-22, January.
    20. Jie Fan & Baoyin Liu & Xiaodong Ming & Yong Sun & Lianjie Qin, 2022. "The amplification effect of unreasonable human behaviours on natural disasters," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jorssa:v:167:y:2004:i:2:p:309-322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/rssssea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.