IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v43y2009i4p311-322.html

Some searches may not work properly. We apologize for the inconvenience.

   My bibliography  Save this article

Regimes in social-cultural events-driven activity sequences: Modelling approach and empirical application

Author

Listed:
  • Arentze, Theo
  • Timmermans, Harry

Abstract

In this study we propose and apply a Bayesian-network model to predict and analyse the factors that influence activity-travel sequences that are triggered by social-cultural events. The study is motivated by the intention to examine the wider context in which activity-travel decisions are made and to model such decisions under longitudinal time horizons. We assume that social events trigger a series of interrelated activities and corresponding trips. Data about events and related activities are collected using a month-diary and involving a large sample of households in the Eindhoven region, The Netherlands. A learning algorithm is applied to derive a Bayesian-network model from the event diary. The results show that indeed many travel choices are influenced by particular events, that these influences vary by socio-demographic variables and that the learned Bayesian-network model is able to represent these interdependencies among all these variables. We demonstrate how the model can be used to predict event-driven activity-travel sequences in a micro-simulation.

Suggested Citation

  • Arentze, Theo & Timmermans, Harry, 2009. "Regimes in social-cultural events-driven activity sequences: Modelling approach and empirical application," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(4), pages 311-322, May.
  • Handle: RePEc:eee:transa:v:43:y:2009:i:4:p:311-322
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965-8564(08)00203-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lauritzen, Steffen L., 1995. "The EM algorithm for graphical association models with missing data," Computational Statistics & Data Analysis, Elsevier, vol. 19(2), pages 191-201, February.
    2. Eric Miller & Matthew Roorda & Juan Carrasco, 2005. "A tour-based model of travel mode choice," Transportation, Springer, vol. 32(4), pages 399-422, July.
    3. Roorda, Matthew J. & Miller, Eric J. & Habib, Khandker M.N., 2008. "Validation of TASHA: A 24-h activity scheduling microsimulation model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(2), pages 360-375, February.
    4. Janssens, Davy & Wets, Geert & Brijs, Tom & Vanhoof, Koen & Arentze, Theo & Timmermans, Harry, 2006. "Integrating Bayesian networks and decision trees in a sequential rule-based transportation model," European Journal of Operational Research, Elsevier, vol. 175(1), pages 16-34, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Min & Wu, Jingxian & Rasouli, Soora & Cirillo, Cinzia & Li, Dawei, 2017. "Exploring the impact of residential relocation on modal shift in commute trips: Evidence from a quasi-longitudinal analysis," Transport Policy, Elsevier, vol. 59(C), pages 142-152.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Min & Wu, Jingxian & Rasouli, Soora & Cirillo, Cinzia & Li, Dawei, 2017. "Exploring the impact of residential relocation on modal shift in commute trips: Evidence from a quasi-longitudinal analysis," Transport Policy, Elsevier, vol. 59(C), pages 142-152.
    2. Kuroda, Masahiro & Sakakihara, Michio & Geng, Zhi, 2008. "Acceleration of the EM and ECM algorithms using the Aitken [delta]2 method for log-linear models with partially classified data," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2332-2338, October.
    3. Ruifen Sun & Min Li & Qunqi Wu, 2018. "Research on Commuting Travel Mode Choice of Car Owners Considering Return Trip Containing Activities," Sustainability, MDPI, vol. 10(10), pages 1-12, September.
    4. Chen, Yen-Liang & Hu, Hui-Ling, 2006. "An overlapping cluster algorithm to provide non-exhaustive clustering," European Journal of Operational Research, Elsevier, vol. 173(3), pages 762-780, September.
    5. Ozonder, Gozde & Miller, Eric J., 2021. "Longitudinal investigation of skeletal activity episode timing decisions – A copula approach," Journal of choice modelling, Elsevier, vol. 40(C).
    6. Yasmin, Farhana & Morency, Catherine & Roorda, Matthew J., 2015. "Assessment of spatial transferability of an activity-based model, TASHA," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 200-213.
    7. Croft, J. & Smith, J. Q., 2003. "Discrete mixtures in Bayesian networks with hidden variables: a latent time budget example," Computational Statistics & Data Analysis, Elsevier, vol. 41(3-4), pages 539-547, January.
    8. Steven Farber & Tijs Neutens & Juan-Antonio Carrasco & Carolina Rojas, 2014. "Social Interaction Potential and the Spatial Distribution of Face-to-Face Social Interactions," Environment and Planning B, , vol. 41(6), pages 960-976, December.
    9. Guan, Xiaodong & Wang, Donggen, 2019. "Influences of the built environment on travel: A household-based perspective," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 710-724.
    10. Fazia Abdat & Sylvie Leclercq & Xavier Cuny & Claire Tissot, 2014. "Extracting recurrent scenarios from narrative texts using a Bayesian network: Application to serious occupational accidents with movement disturbance," Post-Print hal-01578382, HAL.
    11. Li, Zili & Washington, Simon P. & Zheng, Zuduo & Prato, Carlo G., 2023. "A Bayesian hierarchical approach to the joint modelling of Revealed and stated choices," Journal of choice modelling, Elsevier, vol. 47(C).
    12. Ali Najmi & Taha H. Rashidi & Eric J. Miller, 2019. "A novel approach for systematically calibrating transport planning model systems," Transportation, Springer, vol. 46(5), pages 1915-1950, October.
    13. Linda Nijland & Theo Arentze & Harry Timmermans, 2013. "Representing and estimating interactions between activities in a need-based model of activity generation," Transportation, Springer, vol. 40(2), pages 413-430, February.
    14. Esma Nur Cinicioglu & Gül Huyugüzel Kışla & A. Özlem Önder & Y. Gülnur Muradoğlu, 2024. "The Changing Behavior of the European Credit Default Swap Spreads During the Covid-19 Pandemic: A Bayesian Network Analysis," Computational Economics, Springer;Society for Computational Economics, vol. 63(3), pages 1213-1254, March.
    15. Rachid Belaroussi & Younes Delhoum, 2024. "Forecasting Daily Activity Plans of a Synthetic Population in an Upcoming District," Forecasting, MDPI, vol. 6(2), pages 1-26, May.
    16. Verda Kocabas & Suzana Dragicevic, 2013. "Bayesian networks and agent-based modeling approach for urban land-use and population density change: a BNAS model," Journal of Geographical Systems, Springer, vol. 15(4), pages 403-426, October.
    17. Hongyu Wang & Jian Tang & Pengpeng Xu & Rundong Chen & Haona Yao, 2022. "Research on the Influence Mechanism of Street Vitality in Mountainous Cities Based on a Bayesian Network: A Case Study of the Main Urban Area of Chongqing," Land, MDPI, vol. 11(5), pages 1-22, May.
    18. Minjeong Jeon & Frank Rijmen & Sophia Rabe-Hesketh, 2013. "Modeling Differential Item Functioning Using a Generalization of the Multiple-Group Bifactor Model," Journal of Educational and Behavioral Statistics, , vol. 38(1), pages 32-60, February.
    19. Chinh Ho & Corinne Mulley, 2015. "Intra-household interactions in transport research: a review," Transport Reviews, Taylor & Francis Journals, vol. 35(1), pages 33-55, January.
    20. Vo, Khoa D. & Lam, William H.K. & Chen, Anthony & Shao, Hu, 2020. "A household optimum utility approach for modeling joint activity-travel choices in congested road networks," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 93-125.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:43:y:2009:i:4:p:311-322. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.