IDEAS home Printed from https://ideas.repec.org/p/zbw/kitiip/328261.html
   My bibliography  Save this paper

A review of challenges and opportunities in occupant modeling for future residential energy demand

Author

Listed:
  • Vogl, Jonathan
  • Kleinebrahm, Max
  • Raab, Moritz
  • McKenna, Russell
  • Fichtner, Wolf

Abstract

Electrified heating and mobility, the uptake of air conditioning and distributed energy resources are reshaping residential electricity demand and will require substantial investment. Yet the dependencies that drive present and future residential demand across sociodemographic characteristics, occupant activities, energy service demands, local technologies, and interactions with the overarching energy system remain poorly understood. Activity-based, bottom-up models make these dependencies explicit, better informing flexible operation and investment in low-carbon technologies. We review 45 activity-based residential models and assess coverage of appliances, domestic hot water, space heating and cooling, and mobility (electric vehicle charging), which are rarely considered jointly in one integrated model. We identify methodological gaps for consistently modeling behavior: To our knowledge, this is the first review to include activity-based mobility modeling, thereby identifying methodological gaps in consistent behavior modeling across residential energy services: First, most studies simulate single occupants in isolation rather than entire households, thereby overlooking interdependencies among occupants. Second, predominant use of Markov models or independent univariate sampling limits temporal consistency. Based on these findings, future studies should combine complementary behavioral datasets with sophisticated models (e.g., deep neural networks) capable of capturing complex dependencies to generate high-quality synthetic behavioral data as a basis for future bottom-up residential energy demand modeling. Further progress requires open datasets and reproducible validation frameworks to benchmark and compare activity-based models and to ensure consistent progress in the field. Currently, there is no model available in the literature that derives energy demand for thermal comfort, hot water, mobility, and other services consistently from one fundamental representation of household behavior.

Suggested Citation

  • Vogl, Jonathan & Kleinebrahm, Max & Raab, Moritz & McKenna, Russell & Fichtner, Wolf, 2025. "A review of challenges and opportunities in occupant modeling for future residential energy demand," Working Paper Series in Production and Energy 76, Karlsruhe Institute of Technology (KIT), Institute for Industrial Production (IIP).
  • Handle: RePEc:zbw:kitiip:328261
    DOI: 10.5445/IR/1000185143
    as

    Download full text from publisher

    File URL: https://www.econstor.eu/bitstream/10419/328261/1/1938189469.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.5445/IR/1000185143?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Farzan, Farbod & Jafari, Mohsen A. & Gong, Jie & Farzan, Farnaz & Stryker, Andrew, 2015. "A multi-scale adaptive model of residential energy demand," Applied Energy, Elsevier, vol. 150(C), pages 258-273.
    2. Delzendeh, Elham & Wu, Song & Lee, Angela & Zhou, Ying, 2017. "The impact of occupants’ behaviours on building energy analysis: A research review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1061-1071.
    3. Matteo Muratori, 2018. "Impact of uncoordinated plug-in electric vehicle charging on residential power demand," Nature Energy, Nature, vol. 3(3), pages 193-201, March.
    4. Staffell, Iain & Pfenninger, Stefan, 2018. "The increasing impact of weather on electricity supply and demand," Energy, Elsevier, vol. 145(C), pages 65-78.
    5. Muratori, Matteo & Moran, Michael J. & Serra, Emmanuele & Rizzoni, Giorgio, 2013. "Highly-resolved modeling of personal transportation energy consumption in the United States," Energy, Elsevier, vol. 58(C), pages 168-177.
    6. Mathias Müller & Florian Biedenbach & Janis Reinhard, 2020. "Development of an Integrated Simulation Model for Load and Mobility Profiles of Private Households," Energies, MDPI, vol. 13(15), pages 1-33, July.
    7. Iain Staffell & Stefan Pfenninger & Nathan Johnson, 2023. "A global model of hourly space heating and cooling demand at multiple spatial scales," Nature Energy, Nature, vol. 8(12), pages 1328-1344, December.
    8. Kavousian, Amir & Rajagopal, Ram & Fischer, Martin, 2013. "Determinants of residential electricity consumption: Using smart meter data to examine the effect of climate, building characteristics, appliance stock, and occupants' behavior," Energy, Elsevier, vol. 55(C), pages 184-194.
    9. Aydinalp, Merih & Ismet Ugursal, V. & Fung, Alan S., 2004. "Modeling of the space and domestic hot-water heating energy-consumption in the residential sector using neural networks," Applied Energy, Elsevier, vol. 79(2), pages 159-178, October.
    10. Brodnicke, Linda & Kachirayil, Febin & Gabrielli, Paolo & Sansavini, Giovanni & McKenna, Russell, 2025. "Transforming decentralized energy systems: Flexible EV charging and its impact across urbanization degrees," Applied Energy, Elsevier, vol. 384(C).
    11. Mitra, Debrudra & Chu, Yiyi & Cetin, Kristen, 2022. "COVID-19 impacts on residential occupancy schedules and activities in U.S. Homes in 2020 using ATUS," Applied Energy, Elsevier, vol. 324(C).
    12. Brown, T. & Schlachtberger, D. & Kies, A. & Schramm, S. & Greiner, M., 2018. "Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system," Energy, Elsevier, vol. 160(C), pages 720-739.
    13. López-Rodríguez, M.A. & Santiago, I. & Trillo-Montero, D. & Torriti, J. & Moreno-Munoz, A., 2013. "Analysis and modeling of active occupancy of the residential sector in Spain: An indicator of residential electricity consumption," Energy Policy, Elsevier, vol. 62(C), pages 742-751.
    14. Angreine Kewo & Pinrolinvic D. K. Manembu & Per Sieverts Nielsen, 2023. "A Rigorous Standalone Literature Review of Residential Electricity Load Profiles," Energies, MDPI, vol. 16(10), pages 1-27, May.
    15. Muratori, Matteo & Roberts, Matthew C. & Sioshansi, Ramteen & Marano, Vincenzo & Rizzoni, Giorgio, 2013. "A highly resolved modeling technique to simulate residential power demand," Applied Energy, Elsevier, vol. 107(C), pages 465-473.
    16. Roorda, Matthew J. & Miller, Eric J. & Habib, Khandker M.N., 2008. "Validation of TASHA: A 24-h activity scheduling microsimulation model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(2), pages 360-375, February.
    17. Knittel, Tamara & Lowry, Colton & McPherson, Madeleine & Wild, Peter & Rowe, Andrew, 2025. "Electrifying end-use demands: A rise in capacity and flexibility requirements," Energy, Elsevier, vol. 320(C).
    18. Connolly, D., 2017. "Heat Roadmap Europe: Quantitative comparison between the electricity, heating, and cooling sectors for different European countries," Energy, Elsevier, vol. 139(C), pages 580-593.
    19. Swan, Lukas G. & Ugursal, V. Ismet, 2009. "Modeling of end-use energy consumption in the residential sector: A review of modeling techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1819-1835, October.
    20. Claeys, Robbert & Cleenwerck, Rémy & Knockaert, Jos & Desmet, Jan, 2023. "Stochastic generation of residential load profiles with realistic variability based on wavelet-decomposed smart meter data," Applied Energy, Elsevier, vol. 350(C).
    21. McKenna, Eoghan & Thomson, Murray, 2016. "High-resolution stochastic integrated thermal–electrical domestic demand model," Applied Energy, Elsevier, vol. 165(C), pages 445-461.
    22. Grandjean, A. & Adnot, J. & Binet, G., 2012. "A review and an analysis of the residential electric load curve models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6539-6565.
    23. Jalas, Mikko & Juntunen, Jouni K., 2015. "Energy intensive lifestyles: Time use, the activity patterns of consumers, and related energy demands in Finland," Ecological Economics, Elsevier, vol. 113(C), pages 51-59.
    24. Ramírez-Mendiola, José Luis & Grünewald, Philipp & Eyre, Nick, 2019. "Residential activity pattern modelling through stochastic chains of variable memory length," Applied Energy, Elsevier, vol. 237(C), pages 417-430.
    25. Yunusov, Timur & Torriti, Jacopo, 2021. "Distributional effects of Time of Use tariffs based on electricity demand and time use," Energy Policy, Elsevier, vol. 156(C).
    26. Sandels, C. & Widén, J. & Nordström, L., 2014. "Forecasting household consumer electricity load profiles with a combined physical and behavioral approach," Applied Energy, Elsevier, vol. 131(C), pages 267-278.
    27. Al-Wreikat, Yazan & Serrano, Clara & Sodré, José Ricardo, 2022. "Effects of ambient temperature and trip characteristics on the energy consumption of an electric vehicle," Energy, Elsevier, vol. 238(PC).
    28. Harley Frazis & Jay Stewart, 2012. "How to Think about Time-Use Data: What Inferences Can We Make about Long- and Short-Run Time Use from Time Diaries?," Annals of Economics and Statistics, GENES, issue 105-106, pages 231-245.
    29. Bampoulas, Adamantios & Pallonetto, Fabiano & Mangina, Eleni & Finn, Donal P., 2023. "A Bayesian deep-learning framework for assessing the energy flexibility of residential buildings with multicomponent energy systems," Applied Energy, Elsevier, vol. 348(C).
    30. Mehrnaz Anvari & Elisavet Proedrou & Benjamin Schäfer & Christian Beck & Holger Kantz & Marc Timme, 2022. "Data-driven load profiles and the dynamics of residential electricity consumption," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    31. Good, Nicholas & Zhang, Lingxi & Navarro-Espinosa, Alejandro & Mancarella, Pierluigi, 2015. "High resolution modelling of multi-energy domestic demand profiles," Applied Energy, Elsevier, vol. 137(C), pages 193-210.
    32. Zeyen, Elisabeth & Hagenmeyer, Veit & Brown, Tom, 2021. "Mitigating heat demand peaks in buildings in a highly renewable European energy system," Energy, Elsevier, vol. 231(C).
    33. Sekar, Ashok & Williams, Eric & Chen, Roger, 2016. "Heterogeneity in time and energy use of watching television," Energy Policy, Elsevier, vol. 93(C), pages 50-58.
    34. Torriti, Jacopo, 2020. "Temporal aggregation: Time use methodologies applied to residential electricity demand," Utilities Policy, Elsevier, vol. 64(C).
    35. repec:adr:anecst:y:2012:i:105-106:p:11 is not listed on IDEAS
    36. Lukas Lanz & Bessie Noll & Tobias S. Schmidt & Bjarne Steffen, 2022. "Comparing the levelized cost of electric vehicle charging options in Europe," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    37. Laibao Liu & Gang He & Mengxi Wu & Gang Liu & Haoran Zhang & Ying Chen & Jiashu Shen & Shuangcheng Li, 2023. "Climate change impacts on planned supply–demand match in global wind and solar energy systems," Nature Energy, Nature, vol. 8(8), pages 870-880, August.
    38. Jihoon Min & Zeke Hausfather & Qi Feng Lin, 2010. "A High‐Resolution Statistical Model of Residential Energy End Use Characteristics for the United States," Journal of Industrial Ecology, Yale University, vol. 14(5), pages 791-807, October.
    39. Jones, Rory V. & Fuertes, Alba & Lomas, Kevin J., 2015. "The socio-economic, dwelling and appliance related factors affecting electricity consumption in domestic buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 901-917.
    40. Satre-Meloy, Aven & Diakonova, Marina & Grünewald, Philipp, 2020. "Cluster analysis and prediction of residential peak demand profiles using occupant activity data," Applied Energy, Elsevier, vol. 260(C).
    41. Femke J. M. M. Nijsse & Jean-Francois Mercure & Nadia Ameli & Francesca Larosa & Sumit Kothari & Jamie Rickman & Pim Vercoulen & Hector Pollitt, 2023. "The momentum of the solar energy transition," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    42. Fuentes, E. & Arce, L. & Salom, J., 2018. "A review of domestic hot water consumption profiles for application in systems and buildings energy performance analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1530-1547.
    43. Yamaguchi, Yohei & Chen, Chien-fei & Shimoda, Yoshiyuki & Yagita, Yoshie & Iwafune, Yumiko & Ishii, Hideo & Hayashi, Yasuhiro, 2020. "An integrated approach of estimating demand response flexibility of domestic laundry appliances based on household heterogeneity and activities," Energy Policy, Elsevier, vol. 142(C).
    44. Chen, Jianli & Adhikari, Rajendra & Wilson, Eric & Robertson, Joseph & Fontanini, Anthony & Polly, Ben & Olawale, Opeoluwa, 2022. "Stochastic simulation of occupant-driven energy use in a bottom-up residential building stock model," Applied Energy, Elsevier, vol. 325(C).
    45. Bertrand, Alexandre & Mastrucci, Alessio & Schüler, Nils & Aggoune, Riad & Maréchal, François, 2017. "Characterisation of domestic hot water end-uses for integrated urban thermal energy assessment and optimisation," Applied Energy, Elsevier, vol. 186(P2), pages 152-166.
    46. Aydinalp, Merih & Ismet Ugursal, V. & Fung, Alan S., 2002. "Modeling of the appliance, lighting, and space-cooling energy consumptions in the residential sector using neural networks," Applied Energy, Elsevier, vol. 71(2), pages 87-110, February.
    47. Alessia Banfi & Martina Ferrando & Peixian Li & Xing Shi & Francesco Causone, 2024. "Integrating Occupant Behaviour into Urban-Building Energy Modelling: A Review of Current Practices and Challenges," Energies, MDPI, vol. 17(17), pages 1-28, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. McKenna, Eoghan & Thomson, Murray, 2016. "High-resolution stochastic integrated thermal–electrical domestic demand model," Applied Energy, Elsevier, vol. 165(C), pages 445-461.
    2. Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
    3. Meireles, I. & Sousa, V. & Bleys, B. & Poncelet, B., 2022. "Domestic hot water consumption pattern: Relation with total water consumption and air temperature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    4. Shimoda, Yoshiyuki & Yamaguchi, Yohei & Iwafune, Yumiko & Hidaka, Kazuyoshi & Meier, Alan & Yagita, Yoshie & Kawamoto, Hisaki & Nishikiori, Soichi, 2020. "Energy demand science for a decarbonized society in the context of the residential sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    5. Akhmetov, Yerbol & Fedotova, Ekaterina & Frysztacki, Martha Maria, 2025. "Flattening the peak demand curve through energy efficient buildings: A holistic approach towards net-zero carbon," Applied Energy, Elsevier, vol. 384(C).
    6. Pinrolinvic D. K. Manembu & Angreine Kewo & Rasmus Bramstoft & Per Sieverts Nielsen, 2023. "A Systematicity Review on Residential Electricity Load-Shifting at the Appliance Level," Energies, MDPI, vol. 16(23), pages 1-22, November.
    7. Zhang, Wenwen & Robinson, Caleb & Guhathakurta, Subhrajit & Garikapati, Venu M. & Dilkina, Bistra & Brown, Marilyn A. & Pendyala, Ram M., 2018. "Estimating residential energy consumption in metropolitan areas: A microsimulation approach," Energy, Elsevier, vol. 155(C), pages 162-173.
    8. Adeoye, Omotola & Spataru, Catalina, 2019. "Modelling and forecasting hourly electricity demand in West African countries," Applied Energy, Elsevier, vol. 242(C), pages 311-333.
    9. Palacios-Garcia, E.J. & Moreno-Munoz, A. & Santiago, I. & Flores-Arias, J.M. & Bellido-Outeirino, F.J. & Moreno-Garcia, I.M., 2018. "A stochastic modelling and simulation approach to heating and cooling electricity consumption in the residential sector," Energy, Elsevier, vol. 144(C), pages 1080-1091.
    10. Raihanian Mashhadi, Ardeshir & Behdad, Sara, 2018. "Discriminant effects of consumer electronics use-phase attributes on household energy prediction," Energy Policy, Elsevier, vol. 118(C), pages 346-355.
    11. Roberts, Mike B. & Haghdadi, Navid & Bruce, Anna & MacGill, Iain, 2019. "Characterisation of Australian apartment electricity demand and its implications for low-carbon cities," Energy, Elsevier, vol. 180(C), pages 242-257.
    12. Ivanko, Dmytro & Sørensen, Åse Lekang & Nord, Natasa, 2021. "Splitting measurements of the total heat demand in a hotel into domestic hot water and space heating heat use," Energy, Elsevier, vol. 219(C).
    13. Zhou, Xin & Tian, Shuai & An, Jingjing & Yan, Da & Zhang, Lun & Yang, Junyan, 2022. "Modeling occupant behavior’s influence on the energy efficiency of solar domestic hot water systems," Applied Energy, Elsevier, vol. 309(C).
    14. Anna Kipping & Erik Trømborg, 2017. "Modeling Aggregate Hourly Energy Consumption in a Regional Building Stock," Energies, MDPI, vol. 11(1), pages 1-20, December.
    15. Langevin, J. & Reyna, J.L. & Ebrahimigharehbaghi, S. & Sandberg, N. & Fennell, P. & Nägeli, C. & Laverge, J. & Delghust, M. & Mata, É. & Van Hove, M. & Webster, J. & Federico, F. & Jakob, M. & Camaras, 2020. "Developing a common approach for classifying building stock energy models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    16. Gholami, M. & Barbaresi, A. & Torreggiani, D. & Tassinari, P., 2020. "Upscaling of spatial energy planning, phases, methods, and techniques: A systematic review through meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    17. Lombardi, Francesco & Balderrama, Sergio & Quoilin, Sylvain & Colombo, Emanuela, 2019. "Generating high-resolution multi-energy load profiles for remote areas with an open-source stochastic model," Energy, Elsevier, vol. 177(C), pages 433-444.
    18. Wang, Lan & Lee, Eric W.M. & Hussian, Syed Asad & Yuen, Anthony Chun Yin & Feng, Wei, 2021. "Quantitative impact analysis of driving factors on annual residential building energy end-use combining machine learning and stochastic methods," Applied Energy, Elsevier, vol. 299(C).
    19. Biswas, M.A. Rafe & Robinson, Melvin D. & Fumo, Nelson, 2016. "Prediction of residential building energy consumption: A neural network approach," Energy, Elsevier, vol. 117(P1), pages 84-92.
    20. Hall, Rebecca & Kenway, Steven & O'Brien, Katherine & Memon, Fayyaz, 2025. "Quantification of residential water-related energy needs cohesion, validation and global representation to unlock efficiency gains," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;
    ;
    ;

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zbw:kitiip:328261. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ZBW - Leibniz Information Centre for Economics (email available below). General contact details of provider: https://www.iip.kit.edu/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.