IDEAS home Printed from https://ideas.repec.org/a/sae/envirb/v41y2014i6p960-976.html
   My bibliography  Save this article

Social Interaction Potential and the Spatial Distribution of Face-to-Face Social Interactions

Author

Listed:
  • Steven Farber

    (Department of Geography, University of Utah, 260 South Central Campus Drive, Room 270, Salt Lake City, UT 84112, USA)

  • Tijs Neutens

    (Department of Geography, Ghent University, Krijgslaan 281 (S8), B-9000 Ghent, Belgium)

  • Juan-Antonio Carrasco

    (Department of Civil Engineering, Universidad de Concepción, PO Box 160-C, Concepción, Chile)

  • Carolina Rojas

    (Department of Geography, Universidad de Concepción, PO Box 160-C, Concepción, Chile)

Abstract

This paper investigates the spatial distribution of social activity locations. The research makes use of a social interaction potential (SIP) metric to estimate the potential for an individual to participate in a face-to-face social activity at any particular location in the city. The metric is shown to constitute a contact probability field that is sensitive to time-geographic constraints such as home locations, workplaces, and travel times. Empirical case studies drawn from samples in Ghent, Belgium and Concepción, Chile are used to evaluate the effectiveness of the SIP metric in assigning high potential scores to observed social activity episodes. Moreover, a regression model is used to estimate the marginal benefit of using successive levels of constraint detail. The results illustrate both positive and negative aspects of the SIP metric. The metric behaves very well in general; 75% of the time an observed activity location received a score in the 25th percentile. However, lower valued scores were more common in cases when the time-geographic constraints were not very strong (ie, when the commute duration was short), or when activities took place in the homes of the respondents. In the end, the results are a step towards validating the regional scale SIP metric and indicate that it may be useful in microsimulation models of daily travel and activity participation.

Suggested Citation

  • Steven Farber & Tijs Neutens & Juan-Antonio Carrasco & Carolina Rojas, 2014. "Social Interaction Potential and the Spatial Distribution of Face-to-Face Social Interactions," Environment and Planning B, , vol. 41(6), pages 960-976, December.
  • Handle: RePEc:sae:envirb:v:41:y:2014:i:6:p:960-976
    DOI: 10.1068/b120034p
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1068/b120034p
    Download Restriction: no

    File URL: https://libkey.io/10.1068/b120034p?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Seo Yoon & Kathleen Deutsch & Yali Chen & Konstadinos Goulias, 2012. "Feasibility of using time–space prism to represent available opportunities and choice sets for destination choice models in the context of dynamic urban environments," Transportation, Springer, vol. 39(4), pages 807-823, July.
    2. Yin, Ling & Shaw, Shih-Lung & Yu, Hongbo, 2011. "Potential effects of ICT on face-to-face meeting opportunities: a GIS-based time-geographic approach," Journal of Transport Geography, Elsevier, vol. 19(3), pages 422-433.
    3. Roorda, Matthew J. & Miller, Eric J. & Habib, Khandker M.N., 2008. "Validation of TASHA: A 24-h activity scheduling microsimulation model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(2), pages 360-375, February.
    4. Fang, Zhixiang & Tu, Wei & Li, Qingquan & Li, Qiuping, 2011. "A multi-objective approach to scheduling joint participation with variable space and time preferences and opportunities," Journal of Transport Geography, Elsevier, vol. 19(4), pages 623-634.
    5. Sivaramakrishnan Srinivasan & Chandra Bhat, 2005. "Modeling household interactions in daily in-home and out-of-home maintenance activity participation," Transportation, Springer, vol. 32(5), pages 523-544, September.
    6. Ronald, Nicole & Arentze, Theo & Timmermans, Harry, 2012. "Modeling social interactions between individuals for joint activity scheduling," Transportation Research Part B: Methodological, Elsevier, vol. 46(2), pages 276-290.
    7. Juan Carrasco & Eric Miller, 2006. "Exploring the propensity to perform social activities: a social network approach," Transportation, Springer, vol. 33(5), pages 463-480, September.
    8. Scott, Darren M. & He, Sylvia Y., 2012. "Modeling constrained destination choice for shopping: a GIS-based, time-geographic approach," Journal of Transport Geography, Elsevier, vol. 23(C), pages 60-71.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rune Dahl Fitjar & Andrés Rodríguez-Pose, 2017. "Nothing is in the Air," Growth and Change, Wiley Blackwell, vol. 48(1), pages 22-39, March.
    2. Farber, Steven & O'Kelly, Morton & Miller, Harvey J. & Neutens, Tijs, 2015. "Measuring segregation using patterns of daily travel behavior: A social interaction based model of exposure," Journal of Transport Geography, Elsevier, vol. 49(C), pages 26-38.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank Goetzke & Regine Gerike & Antonio Páez & Elenna Dugundji, 2015. "Social interactions in transportation: analyzing groups and spatial networks," Transportation, Springer, vol. 42(5), pages 723-731, September.
    2. Yoon, Seo Youn & Ravulaparthy, Srinath K. & Goulias, Konstadinos G., 2014. "Dynamic diurnal social taxonomy of urban environments using data from a geocoded time use activity-travel diary and point-based business establishment inventory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 68(C), pages 3-17.
    3. Farber, Steven & Páez, Antonio, 2009. "My car, my friends, and me: a preliminary analysis of automobility and social activity participation," Journal of Transport Geography, Elsevier, vol. 17(3), pages 216-225.
    4. Lin, Tao & Wang, Donggen, 2015. "Tradeoffs between in- and out-of-residential neighborhood locations for discretionary activities and time use: do social contexts matter?," Journal of Transport Geography, Elsevier, vol. 47(C), pages 119-127.
    5. Biranchi Adhikari & Ajay Kumar Behera & Rabindra Narayan Mahapatra & Harish Chandra Das, 2022. "Retracted: An empirical model for Indian senior citizens in traffic management," Growth and Change, Wiley Blackwell, vol. 53(1), pages 35-56, March.
    6. Abdul Rawoof Pinjari & Chandra R. Bhat, 2011. "Activity-based Travel Demand Analysis," Chapters, in: André de Palma & Robin Lindsey & Emile Quinet & Roger Vickerman (ed.), A Handbook of Transport Economics, chapter 10, Edward Elgar Publishing.
    7. Han, Chenglin & Luo, Lichen & Parady, Giancarlos & Takami, Kiyoshi & Chikaraishi, Makoto & Harata, Noboru, 2023. "Modeling joint eating-out destination choices incorporating group-level impedance: A case study of the Greater Tokyo Area," Journal of Transport Geography, Elsevier, vol. 111(C).
    8. Vo, Khoa D. & Lam, William H.K. & Chen, Anthony & Shao, Hu, 2020. "A household optimum utility approach for modeling joint activity-travel choices in congested road networks," Transportation Research Part B: Methodological, Elsevier, vol. 134(C), pages 93-125.
    9. Fang, Zhixiang & Shaw, Shih-Lung & Tu, Wei & Li, Qingquan & Li, Yuguang, 2012. "Spatiotemporal analysis of critical transportation links based on time geographic concepts: a case study of critical bridges in Wuhan, China," Journal of Transport Geography, Elsevier, vol. 23(C), pages 44-59.
    10. Feixiong Liao & Theo Arentze & Harry Timmermans, 2013. "Multi-state supernetwork framework for the two-person joint travel problem," Transportation, Springer, vol. 40(4), pages 813-826, July.
    11. Soora Rasouli & Harry Timmermans, 2014. "Guest Editorial," Environment and Planning B, , vol. 41(6), pages 954-959, December.
    12. Khandker M. Nurul Habib & Vivian Hui, 2017. "An activity-based approach of investigating travel behaviour of older people," Transportation, Springer, vol. 44(3), pages 555-573, May.
    13. Pike, Susan & Lubell, Mark, 2016. "Geography and social networks in transportation mode choice," Journal of Transport Geography, Elsevier, vol. 57(C), pages 184-193.
    14. Parady, Giancarlos & Frei, Andreas & Kowald, Matthias & Guidon, Sergio & Wicki, Michael & van den Berg, Pauline & Carrasco, Juan-Antonio & Arentze, Theo & Timmermans, Harry & Wellman, Barry & Takami, , 2021. "A comparative study of social interaction frequencies among social network members in five countries," Journal of Transport Geography, Elsevier, vol. 90(C).
    15. Wang, Donggen & Lin, Tao, 2013. "Built environments, social environments, and activity-travel behavior: a case study of Hong Kong," Journal of Transport Geography, Elsevier, vol. 31(C), pages 286-295.
    16. Saxena, Shobhit & Pinjari, Abdul Rawoof & Paleti, Rajesh, 2022. "A multiple discrete-continuous extreme value model with ordered preferences (MDCEV-OP): Modelling framework for episode-level activity participation and time-use analysis," Transportation Research Part B: Methodological, Elsevier, vol. 166(C), pages 259-283.
    17. Lee, Jae Hyun & Goulias, Konstadinos G., 2018. "Companionship and time investment in social fields at different life cycle stages: Implications for activity and travel modeling and simulation," Research in Transportation Economics, Elsevier, vol. 68(C), pages 18-28.
    18. Matous, Petr, 2017. "Complementarity and substitution between physical and virtual travel for instrumental information sharing in remote rural regions: A social network approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 99(C), pages 61-79.
    19. Xiao Fu & William H. K. Lam, 2018. "Modelling joint activity-travel pattern scheduling problem in multi-modal transit networks," Transportation, Springer, vol. 45(1), pages 23-49, January.
    20. Yoram Shiftan & Moshe Ben-Akiva, 2011. "A practical policy-sensitive, activity-based, travel-demand model," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 47(3), pages 517-541, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:envirb:v:41:y:2014:i:6:p:960-976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.