IDEAS home Printed from https://ideas.repec.org/a/bla/asiaps/v3y2016i3p518-532.html
   My bibliography  Save this article

Influence of Safety Risk Perception on Post-Fukushima Generation Mix and its Policy Implications in Japan

Author

Listed:
  • Akiko Iimura
  • Jeffrey Scott Cross

Abstract

Four years after the Fukushima nuclear power plant accident, a future portfolio of the electrical power generation mix was finally and officially determined by the Japanese Government. Opposition to nuclear power generation remains high in the Japanese public to accept the need for nuclear power given the potential for a nuclear accident in the future. In this paper, we introduce an Analytical Hierarchy Process model to evaluate the influence of two opposing risk perceptions relating to public opinion versus scientific risk measures related to the electrical generation mix. This study revealed that opposing viewpoints on safety results in choosing different generation mixes. It should be noted that the public in large chooses the nuclear-free preference that actually results in a higher number of human fatalities in the energy sector because of the statistically low accident rate in the nuclear energy generation sector, which is contrary to public sentiment in Japan.

Suggested Citation

  • Akiko Iimura & Jeffrey Scott Cross, 2016. "Influence of Safety Risk Perception on Post-Fukushima Generation Mix and its Policy Implications in Japan," Asia and the Pacific Policy Studies, Wiley Blackwell, vol. 3(3), pages 518-532, September.
  • Handle: RePEc:bla:asiaps:v:3:y:2016:i:3:p:518-532
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1002/app5.151
    Download Restriction: Access to full text is restricted to subscribers.
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hong, Sanghyun & Bradshaw, Corey J.A. & Brook, Barry W., 2013. "Evaluating options for the future energy mix of Japan after the Fukushima nuclear crisis," Energy Policy, Elsevier, vol. 56(C), pages 418-424.
    2. Hamalainen, Raimo P., 1990. "A decision aid in the public debate on nuclear power," European Journal of Operational Research, Elsevier, vol. 48(1), pages 66-76, September.
    3. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    4. Lee, Seong Kon & Yoon, Yong Jin & Kim, Jong Wook, 2007. "A study on making a long-term improvement in the national energy efficiency and GHG control plans by the AHP approach," Energy Policy, Elsevier, vol. 35(5), pages 2862-2868, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karatas, Mumtaz & Sulukan, Egemen & Karacan, Ilknur, 2018. "Assessment of Turkey's energy management performance via a hybrid multi-criteria decision-making methodology," Energy, Elsevier, vol. 153(C), pages 890-912.
    2. Shen, Yung-Chi & Chou, Chiyang James & Lin, Grace T.R., 2011. "The portfolio of renewable energy sources for achieving the three E policy goals," Energy, Elsevier, vol. 36(5), pages 2589-2598.
    3. Lee, Seong Kon & Mogi, Gento & Hui, K.S., 2013. "A fuzzy analytic hierarchy process (AHP)/data envelopment analysis (DEA) hybrid model for efficiently allocating energy R&D resources: In the case of energy technologies against high oil prices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 347-355.
    4. Vaidya, Omkarprasad S. & Kumar, Sushil, 2006. "Analytic hierarchy process: An overview of applications," European Journal of Operational Research, Elsevier, vol. 169(1), pages 1-29, February.
    5. Ahadi, Pedram & Fakhrabadi, Farbod & Pourshaghaghy, Alireza & Kowsary, Farshad, 2023. "Optimal site selection for a solar power plant in Iran via the Analytic Hierarchy Process (AHP)," Renewable Energy, Elsevier, vol. 215(C).
    6. Zhou, P. & Ang, B.W. & Poh, K.L., 2006. "Decision analysis in energy and environmental modeling: An update," Energy, Elsevier, vol. 31(14), pages 2604-2622.
    7. Chung, Yanghon & Hong, Sungjun & Kim, Jongwook, 2014. "Which of the technologies for producing hydrogen is the most prospective in Korea?: Evaluating the competitive priority of those in near-, mid-, and long-term," Energy Policy, Elsevier, vol. 65(C), pages 115-125.
    8. Banai, Reza, 2010. "Evaluation of land use-transportation systems with the Analytic Network Process," The Journal of Transport and Land Use, Center for Transportation Studies, University of Minnesota, vol. 3(1), pages 85-112.
    9. Fatih Yiğit & Şakir Esnaf, 2021. "A new Fuzzy C-Means and AHP-based three-phased approach for multiple criteria ABC inventory classification," Journal of Intelligent Manufacturing, Springer, vol. 32(6), pages 1517-1528, August.
    10. Rachele Corticelli & Margherita Pazzini & Cecilia Mazzoli & Claudio Lantieri & Annarita Ferrante & Valeria Vignali, 2022. "Urban Regeneration and Soft Mobility: The Case Study of the Rimini Canal Port in Italy," Sustainability, MDPI, vol. 14(21), pages 1-27, November.
    11. Lin, Sheng-Hau & Zhao, Xiaofeng & Wu, Jiuxing & Liang, Fachao & Li, Jia-Hsuan & Lai, Ren-Ji & Hsieh, Jing-Chzi & Tzeng, Gwo-Hshiung, 2021. "An evaluation framework for developing green infrastructure by using a new hybrid multiple attribute decision-making model for promoting environmental sustainability," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
    12. Pishchulov, Grigory & Trautrims, Alexander & Chesney, Thomas & Gold, Stefan & Schwab, Leila, 2019. "The Voting Analytic Hierarchy Process revisited: A revised method with application to sustainable supplier selection," International Journal of Production Economics, Elsevier, vol. 211(C), pages 166-179.
    13. Seung-Jin Han & Won-Jae Lee & So-Hee Kim & Sang-Hoon Yoon & Hyunwoong Pyun, 2022. "Assessing Expected Long-term Benefits for the Olympic Games: Delphi-AHP Approach from Korean Olympic Experts," SAGE Open, , vol. 12(4), pages 21582440221, December.
    14. Denys Yemshanov & Frank H. Koch & Yakov Ben‐Haim & Marla Downing & Frank Sapio & Marty Siltanen, 2013. "A New Multicriteria Risk Mapping Approach Based on a Multiattribute Frontier Concept," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1694-1709, September.
    15. Mangla, Sachin Kumar & Srivastava, Praveen Ranjan & Eachempati, Prajwal & Tiwari, Aviral Kumar, 2024. "Exploring the impact of key performance factors on energy markets: From energy risk management perspectives," Energy Economics, Elsevier, vol. 131(C).
    16. Seyed Rakhshan & Ali Kamyad & Sohrab Effati, 2015. "Ranking decision-making units by using combination of analytical hierarchical process method and Tchebycheff model in data envelopment analysis," Annals of Operations Research, Springer, vol. 226(1), pages 505-525, March.
    17. V. Srinivasan & G. Shainesh & Anand K. Sharma, 2015. "An approach to prioritize customer-based, cost-effective service enhancements," The Service Industries Journal, Taylor & Francis Journals, vol. 35(14), pages 747-762, October.
    18. Mónica García-Melón & Blanca Pérez-Gladish & Tomás Gómez-Navarro & Paz Mendez-Rodriguez, 2016. "Assessing mutual funds’ corporate social responsibility: a multistakeholder-AHP based methodology," Annals of Operations Research, Springer, vol. 244(2), pages 475-503, September.
    19. Jitendar Kumar Khatri & Bhimaraya Metri, 2016. "SWOT-AHP Approach for Sustainable Manufacturing Strategy Selection: A Case of Indian SME," Global Business Review, International Management Institute, vol. 17(5), pages 1211-1226, October.
    20. Vlachokostas, Ch. & Michailidou, A.V. & Achillas, Ch., 2021. "Multi-Criteria Decision Analysis towards promoting Waste-to-Energy Management Strategies: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:asiaps:v:3:y:2016:i:3:p:518-532. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=2050-2680 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.