IDEAS home Printed from https://ideas.repec.org/a/bit/bsrysr/v16y2025i1p178-197n1009.html
   My bibliography  Save this article

Estimating Short-term Default Probabilities Conditional to Economic Conditions: Applications of Regularisation Approach and Economic Adjustment Coefficients

Author

Listed:
  • Mustafa Siti Aisyah

    (Faculty of Business, Economics and Social Development, University of Malaysia Terengganu, Malaysia, Faculty of Technology Management and Business, University Tun Hussein Onn Malaysia)

  • Nor Safwan Mohd

    (Faculty of Business, Economics and Social Development, University of Malaysia Terengganu, Malaysia, Victoria Institute of Strategic Economic Studies, Victoria University, Australia)

  • Halim Zairihan Abdul

    (Faculty of Business, Economics and Social Development, University of Malaysia Terengganu, Malaysia)

  • Zawawi Nur Haiza Muhammad

    (Faculty of Business, Economics and Social Development, University of Malaysia Terengganu, Malaysia)

Abstract

Background Corporate bonds are crucial for corporations as they provide a flexible and often less costly alternative to equity financing. However, rising corporate debt levels, along with rating downgrades and economic uncertainty, can cause corporations to face financial distress, exacerbating the probability of default. Objectives The purpose of this paper is to estimate bond default probabilities conditional on fluctuations in economic growth over short-term frequencies using inputs from rating transitions. Methods/Approach The estimation is based on a Markov chain framework and the incorporation of economic growth by utilizing specifications of the economic adjustment coefficient. Further, quasi-optimisation of the roots matrix is utilized to extend the model within a quarterly domain. Results Economic growth (proxied by GDP) carries little informational content on the future default probabilities. Non-investment grade ratings depict higher default probability, while investment-grade ratings yield default propensity of less than 1.1% in the next quarters and exhibit higher distance between default probabilities by tenor points and neighbouring states as the time horizon lengthens. Conclusions First, practitioners can measure forward-looking bond exposure across different tenure buckets using the estimation approach developed in this study. Second, by considering historical fluctuations in the economic cycle as an additional factor for estimating future default probability, this study informs financial market regulators by providing entities with an alternative reference point to their in-house generated models, helping them meet regulatory requirements.

Suggested Citation

  • Mustafa Siti Aisyah & Nor Safwan Mohd & Halim Zairihan Abdul & Zawawi Nur Haiza Muhammad, 2025. "Estimating Short-term Default Probabilities Conditional to Economic Conditions: Applications of Regularisation Approach and Economic Adjustment Coefficients," Business Systems Research, Sciendo, vol. 16(1), pages 178-197.
  • Handle: RePEc:bit:bsrysr:v:16:y:2025:i:1:p:178-197:n:1009
    DOI: 10.2478/bsrj-2025-0009
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/bsrj-2025-0009
    Download Restriction: no

    File URL: https://libkey.io/10.2478/bsrj-2025-0009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Cathcart, Lara & Dufour, Alfonso & Rossi, Ludovico & Varotto, Simone, 2020. "The differential impact of leverage on the default risk of small and large firms," Journal of Corporate Finance, Elsevier, vol. 60(C).
    2. Duffie, Darrell & Saita, Leandro & Wang, Ke, 2007. "Multi-period corporate default prediction with stochastic covariates," Journal of Financial Economics, Elsevier, vol. 83(3), pages 635-665, March.
    3. G. dos Reis & G. Smith, 2018. "Robust and consistent estimation of generators in credit risk," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 983-1001, June.
    4. Mogens Bladt & Michael SØrensen, 2009. "Efficient estimation of transition rates between credit ratings from observations at discrete time points," Quantitative Finance, Taylor & Francis Journals, vol. 9(2), pages 147-160.
    5. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    6. Abdelkader Derbali & Lamia Jamel, 2019. "Dependence of Default Probability and Recovery Rate in Structural Credit Risk Models: Case of Greek Banks," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 10(2), pages 711-733, June.
    7. Elie Bouri & Muhammad Abubakr Naeem & Safwan Mohd Nor & Imen Mbarki & Tareq Saeed, 2022. "Government responses to COVID-19 and industry stock returns," Economic Research-Ekonomska Istraživanja, Taylor & Francis Journals, vol. 35(1), pages 1967-1990, December.
    8. S. Baena‐Mirabete & P. Puig, 2018. "Parsimonious higher order Markov models for rating transitions," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(1), pages 107-131, January.
    9. Mogens Bladt & Michael Sørensen, 2005. "Statistical inference for discretely observed Markov jump processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(3), pages 395-410, June.
    10. Afik, Zvika & Arad, Ohad & Galil, Koresh, 2016. "Using Merton model for default prediction: An empirical assessment of selected alternatives," Journal of Empirical Finance, Elsevier, vol. 35(C), pages 43-67.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Linda Möstel & Marius Pfeuffer & Matthias Fischer, 2020. "Statistical inference for Markov chains with applications to credit risk," Computational Statistics, Springer, vol. 35(4), pages 1659-1684, December.
    2. Marius Pfeuffer & Goncalo dos Reis & Greig smith, 2018. "Capturing Model Risk and Rating Momentum in the Estimation of Probabilities of Default and Credit Rating Migrations," Papers 1809.09889, arXiv.org, revised Feb 2020.
    3. Viktor Lapshin & Markov Anton, 2022. "MCMC-based credit rating aggregation algorithm to tackle data insufficiency," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 68, pages 50-72.
    4. Postiglione, Massimo & Carini, Cristian & Falini, Alberto, 2025. "Assessing Firm ESG Performance Through Corporate Survival: The Moderating Role of Firm Size," International Review of Financial Analysis, Elsevier, vol. 100(C).
    5. Voß, Sebastian & Weißbach, Rafael, 2014. "A score-test on measurement errors in rating transition times," Journal of Econometrics, Elsevier, vol. 180(1), pages 16-29.
    6. Chen, Peimin & Wu, Chunchi, 2014. "Default prediction with dynamic sectoral and macroeconomic frailties," Journal of Banking & Finance, Elsevier, vol. 40(C), pages 211-226.
    7. Nusrat Jahan, 2022. "Macroeconomic Determinants of Corporate Credit Spreads: Evidence from Canada," Carleton Economic Papers 22-07, Carleton University, Department of Economics.
    8. Koresh Galil & Neta Gilat, 2019. "Predicting Default More Accurately: To Proxy or Not to Proxy for Default?," International Review of Finance, International Review of Finance Ltd., vol. 19(4), pages 731-758, December.
    9. Giesecke, Kay & Longstaff, Francis A. & Schaefer, Stephen & Strebulaev, Ilya, 2011. "Corporate bond default risk: A 150-year perspective," Journal of Financial Economics, Elsevier, vol. 102(2), pages 233-250.
    10. Ángel Beade & Manuel Rodríguez & José Santos, 2024. "Multiperiod Bankruptcy Prediction Models with Interpretable Single Models," Computational Economics, Springer;Society for Computational Economics, vol. 64(3), pages 1357-1390, September.
    11. Dragon Tang & Hong Yan, 2006. "Macroeconomic Conditions, Firm Characteristics, and Credit Spreads," Journal of Financial Services Research, Springer;Western Finance Association, vol. 29(3), pages 177-210, June.
    12. Sigrist, Fabio & Leuenberger, Nicola, 2023. "Machine learning for corporate default risk: Multi-period prediction, frailty correlation, loan portfolios, and tail probabilities," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1390-1406.
    13. Giulio Bottazzi & Marco Grazzi & Angelo Secchi & Federico Tamagni, 2011. "Financial and economic determinants of firm default," Journal of Evolutionary Economics, Springer, vol. 21(3), pages 373-406, August.
    14. Annaert, Jan & De Ceuster, Marc & Van Roy, Patrick & Vespro, Cristina, 2013. "What determines Euro area bank CDS spreads?," Journal of International Money and Finance, Elsevier, vol. 32(C), pages 444-461.
    15. Tamás Kristóf, 2021. "Sovereign Default Forecasting in the Era of the COVID-19 Crisis," JRFM, MDPI, vol. 14(10), pages 1-24, October.
    16. Zhang, Xuan & Ouyang, Ruolan & Liu, Ding & Xu, Liao, 2020. "Determinants of corporate default risk in China: The role of financial constraints," Economic Modelling, Elsevier, vol. 92(C), pages 87-98.
    17. Sim, Jaehun & Kim, Chae-Soo, 2019. "The value of renewable energy research and development investments with default consideration," Renewable Energy, Elsevier, vol. 143(C), pages 530-539.
    18. Stefan Nagel & Amiyatosh Purnanandam, 2020. "Banks’ Risk Dynamics and Distance to Default," The Review of Financial Studies, Society for Financial Studies, vol. 33(6), pages 2421-2467.
    19. Turalay Kenc & Emrah Ismail Cevik, 2021. "Estimating volatility clustering and variance risk premium effects on bank default indicators," Review of Quantitative Finance and Accounting, Springer, vol. 57(4), pages 1373-1392, November.
    20. Harada, Kimie & Ito, Takatoshi & Takahashi, Shuhei, 2013. "Is the Distance to Default a good measure in predicting bank failures? A case study of Japanese major banks," Japan and the World Economy, Elsevier, vol. 27(C), pages 70-82.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    JEL classification:

    • G17 - Financial Economics - - General Financial Markets - - - Financial Forecasting and Simulation
    • G24 - Financial Economics - - Financial Institutions and Services - - - Investment Banking; Venture Capital; Brokerage
    • G2 - Financial Economics - - Financial Institutions and Services

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bit:bsrysr:v:16:y:2025:i:1:p:178-197:n:1009. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.