IDEAS home Printed from https://ideas.repec.org/a/spr/jknowl/v10y2019i2d10.1007_s13132-017-0473-1.html
   My bibliography  Save this article

Dependence of Default Probability and Recovery Rate in Structural Credit Risk Models: Case of Greek Banks

Author

Listed:
  • Abdelkader Derbali

    (University of Sousse)

  • Lamia Jamel

    (Sousse University)

Abstract

The main idea of this paper is to examine the dependence between the probability of default (PD) and the recovery rate (RR). For the empirical methodology, we use the bootstrapped quantile regression and the simultaneous quantile regression for a sample of 17 Greek banks listed in Athens Exchange over the period of study from January 02, 2006 to December 31, 2012. The measurement of this dependence is determined by using seven indicators such as the probability of default, the recovery rate, the number of defaults, the expected value of losses, the growth rate of GDP in Greece, and three dummy variables (the exit of another firm of the Athens Exchange, the new firm is listed in the Athens Exchange, and the date of the failure of Greece). The main empirical results show that the probability of default and the recovery rate are inversely related. Based on this result, the banks are obliged to maximize their recovery rate to reduce their probability of default.

Suggested Citation

  • Abdelkader Derbali & Lamia Jamel, 2019. "Dependence of Default Probability and Recovery Rate in Structural Credit Risk Models: Case of Greek Banks," Journal of the Knowledge Economy, Springer;Portland International Center for Management of Engineering and Technology (PICMET), vol. 10(2), pages 711-733, June.
  • Handle: RePEc:spr:jknowl:v:10:y:2019:i:2:d:10.1007_s13132-017-0473-1
    DOI: 10.1007/s13132-017-0473-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13132-017-0473-1
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13132-017-0473-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Jones, E Philip & Mason, Scott P & Rosenfeld, Eric, 1984. "Contingent Claims Analysis of Corporate Capital Structures: An Empirical Investigation," Journal of Finance, American Finance Association, vol. 39(3), pages 611-625, July.
    2. Black, Fischer & Cox, John C, 1976. "Valuing Corporate Securities: Some Effects of Bond Indenture Provisions," Journal of Finance, American Finance Association, vol. 31(2), pages 351-367, May.
    3. Bruche, Max & González-Aguado, Carlos, 2010. "Recovery rates, default probabilities, and the credit cycle," Journal of Banking & Finance, Elsevier, vol. 34(4), pages 754-764, April.
    4. D. J. Hand & W. E. Henley, 1997. "Statistical Classification Methods in Consumer Credit Scoring: a Review," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 160(3), pages 523-541, September.
    5. Eric Rosenberg & Alan Gleit, 1994. "Quantitative Methods in Credit Management: A Survey," Operations Research, INFORMS, vol. 42(4), pages 589-613, August.
    6. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
    7. Thomas, Lyn C., 2000. "A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers," International Journal of Forecasting, Elsevier, vol. 16(2), pages 149-172.
    8. Robert A. Jarrow & Stuart M. Turnbull, 2008. "Pricing Derivatives on Financial Securities Subject to Credit Risk," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 17, pages 377-409, World Scientific Publishing Co. Pte. Ltd..
    9. Schäfer, Rudi & Koivusalo, Alexander F.R., 2013. "Dependence of defaults and recoveries in structural credit risk models," Economic Modelling, Elsevier, vol. 30(C), pages 1-9.
    10. Asquith, Paul & Mullins, David W, Jr & Wolff, Eric D, 1989. " Original Issue High Yield Bonds: Aging Analyses of Defaults, Exchanges, and Calls," Journal of Finance, American Finance Association, vol. 44(4), pages 923-952, September.
    11. Longstaff, Francis A & Schwartz, Eduardo S, 1995. "A Simple Approach to Valuing Risky Fixed and Floating Rate Debt," Journal of Finance, American Finance Association, vol. 50(3), pages 789-819, July.
    12. Altman, Edward I, 1989. " Measuring Corporate Bond Mortality and Performance," Journal of Finance, American Finance Association, vol. 44(4), pages 909-922, September.
    13. Geske, Robert, 1977. "The Valuation of Corporate Liabilities as Compound Options," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 541-552, November.
    14. Gordy, Michael B., 2000. "A comparative anatomy of credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 119-149, January.
    15. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    16. Wu, Chunchi & Yu, Chih-Hsien, 1996. "Risk aversion and the yield of corporate debt," Journal of Banking & Finance, Elsevier, vol. 20(2), pages 267-281, March.
    17. Jon Frye, 2000. "Collateral damage detected," Emerging Issues, Federal Reserve Bank of Chicago, issue Sep.
    18. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    19. D Rösch & H Scheule, 2014. "Forecasting probabilities of default and loss rates given default in the presence of selection," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 65(3), pages 393-407, March.
    20. Edward I. Altman & Brooks Brady & Andrea Resti & Andrea Sironi, 2005. "The Link between Default and Recovery Rates: Theory, Empirical Evidence, and Implications," The Journal of Business, University of Chicago Press, vol. 78(6), pages 2203-2228, November.
    21. In Joon Kim & Krishna Ramaswamy & Suresh Sundaresan, 1993. "Does Default Risk in Coupons Affect the Valuation of Corporate Bonds?: A Contingent Claims Model," Financial Management, Financial Management Association, vol. 22(3), Fall.
    22. Crouhy, Michel & Galai, Dan & Mark, Robert, 2000. "A comparative analysis of current credit risk models," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 59-117, January.
    23. Jarrow, Robert A., 2011. "Credit market equilibrium theory and evidence: Revisiting the structural versus reduced form credit risk model debate," Finance Research Letters, Elsevier, vol. 8(1), pages 2-7, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stephen Zamore & Kwame Ohene Djan & Ilan Alon & Bersant Hobdari, 2018. "Credit Risk Research: Review and Agenda," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 54(4), pages 811-835, March.
    2. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    3. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011.
    4. repec:wyi:journl:002109 is not listed on IDEAS
    5. Michael Jacobs, Jr, 2011. "An option theoretic model for ultimate loss-given-default with systematic recovery risk and stochastic returns on defaulted debt," BIS Papers chapters, in: Bank for International Settlements (ed.), Portfolio and risk management for central banks and sovereign wealth funds, volume 58, pages 257-285, Bank for International Settlements.
    6. Giesecke, Kay & Longstaff, Francis A. & Schaefer, Stephen & Strebulaev, Ilya, 2011. "Corporate bond default risk: A 150-year perspective," Journal of Financial Economics, Elsevier, vol. 102(2), pages 233-250.
    7. Duffie, Darrell, 2005. "Credit risk modeling with affine processes," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2751-2802, November.
    8. International Association of Deposit Insurers, 2011. "Evaluation of Deposit Insurance Fund Sufficiency on the Basis of Risk Analysis," IADI Research Papers 11-11, International Association of Deposit Insurers.
    9. Martin Dòzsa & Karel Janda, 2015. "Corporate asset pricing models and debt contracts," CAMA Working Papers 2015-33, Centre for Applied Macroeconomic Analysis, Crawford School of Public Policy, The Australian National University.
    10. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 5, July-Dece.
    11. Francois, Pascal & Hubner, Georges, 2004. "Credit derivatives with multiple debt issues," Journal of Banking & Finance, Elsevier, vol. 28(5), pages 997-1021, May.
    12. Stephanie Heck, 2022. "Corporate bond yields and returns: a survey," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 36(2), pages 179-201, June.
    13. Chen, An-Sing & Chu, Hsiang-Hui & Hung, Pi-Hsia & Cheng, Miao-Sih, 2020. "Financial risk and acquirers' stockholder wealth in mergers and acquisitions," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    14. Zhou, Chunsheng, 2001. "The term structure of credit spreads with jump risk," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 2015-2040, November.
    15. Tsung-Kang Chen & Hsien-Hsing Liao & Chia-Wu Lu, 2011. "A flow-based corporate credit model," Review of Quantitative Finance and Accounting, Springer, vol. 36(4), pages 517-532, May.
    16. Jean-David Fermanian, 2020. "On the Dependence between Default Risk and Recovery Rates in Structural Models," Annals of Economics and Statistics, GENES, issue 140, pages 45-82.
    17. Duffie, Darrell, 2003. "Intertemporal asset pricing theory," Handbook of the Economics of Finance, in: G.M. Constantinides & M. Harris & R. M. Stulz (ed.), Handbook of the Economics of Finance, edition 1, volume 1, chapter 11, pages 639-742, Elsevier.
    18. Finbarr Murphy & Bernard Murphy, 2012. "A vector-autoregression analysis of credit and liquidity factor dynamics in US LIBOR and Euribor swap markets," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 36(2), pages 351-370, April.
    19. Qiang Dai & Kenneth Singleton, 2003. "Term Structure Dynamics in Theory and Reality," Review of Financial Studies, Society for Financial Studies, vol. 16(3), pages 631-678, July.
    20. Hamerle, Alfred & Liebig, Thilo & Rösch, Daniel, 2003. "Credit Risk Factor Modeling and the Basel II IRB Approach," Discussion Paper Series 2: Banking and Financial Studies 2003,02, Deutsche Bundesbank.
    21. Davide Radi & Vu Phuong Hoang & Gabriele Torri & Hana Dvořáčková, 2021. "A revised version of the Cathcart & El-Jahel model and its application to CDS market," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 669-705, December.

    More about this item

    Keywords

    Probability of default; Recovery rate; Number of default; Expected value of losses; Bootstrapped quantile regression; Simultaneous quantile regression;
    All these keywords.

    JEL classification:

    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • G12 - Financial Economics - - General Financial Markets - - - Asset Pricing; Trading Volume; Bond Interest Rates
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:jknowl:v:10:y:2019:i:2:d:10.1007_s13132-017-0473-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.