IDEAS home Printed from https://ideas.repec.org/a/ris/apltrx/0458.html
   My bibliography  Save this article

MCMC-based credit rating aggregation algorithm to tackle data insufficiency

Author

Listed:
  • Lapshin, Viktor

    (HSE University, Моscow;)

  • Anton, Markov

    (HSE University, Моscow;)

Abstract

This paper investigates how credit rating aggregation might lead to a more efficient estimation of key portfolio risk management metrics: expected credit losses (ECL) and risk-weighted assets (RWA). The proposed technique for credit rating aggregation is based on the Markov Chain Monte-Carlo methodology and leads to a statistically smaller variance of ECL and RWA than the naïve and distribution-based alternatives. This conclusion holds for three public datasets and four simulated studies. The paper results might be helpful for portfolios that suffer from data insufficiency or rely on external ratings for credit risk assessment: portfolios of international companies, interbank loans, and sovereign debt.

Suggested Citation

  • Lapshin, Viktor & Anton, Markov, 2022. "MCMC-based credit rating aggregation algorithm to tackle data insufficiency," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 68, pages 50-72.
  • Handle: RePEc:ris:apltrx:0458
    as

    Download full text from publisher

    File URL: http://pe.cemi.rssi.ru/pe_2022_68_050-072.pdf
    File Function: Full text
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Edward Altman & Andrea Resti & Andrea Sironi, 2004. "Default Recovery Rates in Credit Risk Modelling: A Review of the Literature and Empirical Evidence," Economic Notes, Banca Monte dei Paschi di Siena SpA, vol. 33(2), pages 183-208, July.
    2. Malik, Madhur & Thomas, Lyn C., 2012. "Transition matrix models of consumer credit ratings," International Journal of Forecasting, Elsevier, vol. 28(1), pages 261-272.
    3. Nickell, Pamela & Perraudin, William & Varotto, Simone, 2000. "Stability of rating transitions," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 203-227, January.
    4. G. dos Reis & G. Smith, 2018. "Robust and consistent estimation of generators in credit risk," Quantitative Finance, Taylor & Francis Journals, vol. 18(6), pages 983-1001, June.
    5. Linda Möstel & Marius Pfeuffer & Matthias Fischer, 2020. "Statistical inference for Markov chains with applications to credit risk," Computational Statistics, Springer, vol. 35(4), pages 1659-1684, December.
    6. Robert A. Jarrow & David Lando & Stuart M. Turnbull, 2008. "A Markov Model for the Term Structure of Credit Risk Spreads," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 18, pages 411-453, World Scientific Publishing Co. Pte. Ltd..
    7. Tsai, Chih-Fong & Sue, Kuen-Liang & Hu, Ya-Han & Chiu, Andy, 2021. "Combining feature selection, instance selection, and ensemble classification techniques for improved financial distress prediction," Journal of Business Research, Elsevier, vol. 130(C), pages 200-209.
    8. Carey, Mark & Hrycay, Mark, 2001. "Parameterizing credit risk models with rating data," Journal of Banking & Finance, Elsevier, vol. 25(1), pages 197-270, January.
    9. Robert A. Jarrow & Stuart M. Turnbull, 2008. "Pricing Derivatives on Financial Securities Subject to Credit Risk," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 17, pages 377-409, World Scientific Publishing Co. Pte. Ltd..
    10. Edward I. Altman, 1968. "Financial Ratios, Discriminant Analysis And The Prediction Of Corporate Bankruptcy," Journal of Finance, American Finance Association, vol. 23(4), pages 589-609, September.
    11. Masaaki Kijima, 1998. "Monotonicities in a Markov Chain Model for Valuing Corporate Bonds Subject to Credit Risk," Mathematical Finance, Wiley Blackwell, vol. 8(3), pages 229-247, July.
    12. Edward I. Altman, 1968. "The Prediction Of Corporate Bankruptcy: A Discriminant Analysis," Journal of Finance, American Finance Association, vol. 23(1), pages 193-194, March.
    13. Margaret S. Trench & Shane P. Pederson & Edward T. Lau & Lizhi Ma & Hui Wang & Suresh K. Nair, 2003. "Managing Credit Lines and Prices for Bank One Credit Cards," Interfaces, INFORMS, vol. 33(5), pages 4-21, October.
    14. Mogens Bladt & Michael Sørensen, 2005. "Statistical inference for discretely observed Markov jump processes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(3), pages 395-410, June.
    15. Vasicek, Oldrich, 1977. "An equilibrium characterization of the term structure," Journal of Financial Economics, Elsevier, vol. 5(2), pages 177-188, November.
    16. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    17. G. dos Reis & M. Pfeuffer & G. Smith, 2020. "Capturing model risk and rating momentum in the estimation of probabilities of default and credit rating migrations," Quantitative Finance, Taylor & Francis Journals, vol. 20(7), pages 1069-1083, July.
    18. Marius Pfeuffer & Goncalo dos Reis & Greig smith, 2018. "Capturing Model Risk and Rating Momentum in the Estimation of Probabilities of Default and Credit Rating Migrations," Papers 1809.09889, arXiv.org, revised Feb 2020.
    19. Alexander J. McNeil & Rüdiger Frey & Paul Embrechts, 2015. "Quantitative Risk Management: Concepts, Techniques and Tools Revised edition," Economics Books, Princeton University Press, edition 2, number 10496.
    20. Puneet Pasricha & Dharmaraja Selvamuthu & Guglielmo D’Amico & Raimondo Manca, 2020. "Portfolio optimization of credit risky bonds: a semi-Markov process approach," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-14, December.
    21. Hanson, Samuel & Schuermann, Til, 2006. "Confidence intervals for probabilities of default," Journal of Banking & Finance, Elsevier, vol. 30(8), pages 2281-2301, August.
    22. Mogens Bladt & Michael SØrensen, 2009. "Efficient estimation of transition rates between credit ratings from observations at discrete time points," Quantitative Finance, Taylor & Francis Journals, vol. 9(2), pages 147-160.
    23. Hu, Yen-Ting & Kiesel, Rudiger & Perraudin, William, 2002. "The estimation of transition matrices for sovereign credit ratings," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1383-1406, July.
    24. Lando, David & Skodeberg, Torben M., 2002. "Analyzing rating transitions and rating drift with continuous observations," Journal of Banking & Finance, Elsevier, vol. 26(2-3), pages 423-444, March.
    25. Hayashi, Yoichi, 2016. "Application of a rule extraction algorithm family based on the Re-RX algorithm to financial credit risk assessment from a Pareto optimal perspective," Operations Research Perspectives, Elsevier, vol. 3(C), pages 32-42.
    26. Dimitris Gavalas & Theodore Syriopoulos, 2014. "Bank Credit Risk Management and Rating Migration Analysis on the Business Cycle," IJFS, MDPI, vol. 2(1), pages 1-22, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tamás Kristóf, 2021. "Sovereign Default Forecasting in the Era of the COVID-19 Crisis," JRFM, MDPI, vol. 14(10), pages 1-24, October.
    2. Trueck, Stefan & Rachev, Svetlozar T., 2008. "Rating Based Modeling of Credit Risk," Elsevier Monographs, Elsevier, edition 1, number 9780123736833.
    3. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, December.
    4. Chen, An-Sing & Chu, Hsiang-Hui & Hung, Pi-Hsia & Cheng, Miao-Sih, 2020. "Financial risk and acquirers' stockholder wealth in mergers and acquisitions," The North American Journal of Economics and Finance, Elsevier, vol. 54(C).
    5. Marius Pfeuffer & Goncalo dos Reis & Greig smith, 2018. "Capturing Model Risk and Rating Momentum in the Estimation of Probabilities of Default and Credit Rating Migrations," Papers 1809.09889, arXiv.org, revised Feb 2020.
    6. Oliver Blümke, 2022. "Multiperiod default probability forecasting," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(4), pages 677-696, July.
    7. Stephen Zamore & Kwame Ohene Djan & Ilan Alon & Bersant Hobdari, 2018. "Credit Risk Research: Review and Agenda," Emerging Markets Finance and Trade, Taylor & Francis Journals, vol. 54(4), pages 811-835, March.
    8. Voß, Sebastian & Weißbach, Rafael, 2014. "A score-test on measurement errors in rating transition times," Journal of Econometrics, Elsevier, vol. 180(1), pages 16-29.
    9. Pesaran, M. Hashem & Schuermann, Til & Treutler, Bjorn-Jakob & Weiner, Scott M., 2006. "Macroeconomic Dynamics and Credit Risk: A Global Perspective," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 38(5), pages 1211-1261, August.
    10. Duffie, Darrell, 2005. "Credit risk modeling with affine processes," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2751-2802, November.
    11. Jeffrey R. Stokes, 2023. "A nonlinear inversion procedure for modeling the effects of economic factors on credit risk migration," Review of Quantitative Finance and Accounting, Springer, vol. 61(3), pages 855-878, October.
    12. Smith, Brent C, 2011. "Stability in consumer credit scores: Level and direction of FICO score drift as a precursor to mortgage default and prepayment," Journal of Housing Economics, Elsevier, vol. 20(4), pages 285-298.
    13. Altman, Edward I. & Rijken, Herbert A., 2004. "How rating agencies achieve rating stability," Journal of Banking & Finance, Elsevier, vol. 28(11), pages 2679-2714, November.
    14. Livingston, Miles & Naranjo, Andy & Zhou, Lei, 2008. "Split bond ratings and rating migration," Journal of Banking & Finance, Elsevier, vol. 32(8), pages 1613-1624, August.
    15. Jarrow, Robert A. & Turnbull, Stuart M., 2000. "The intersection of market and credit risk," Journal of Banking & Finance, Elsevier, vol. 24(1-2), pages 271-299, January.
    16. Kim, Yoonseong & Sohn, So Young, 2008. "Random effects model for credit rating transitions," European Journal of Operational Research, Elsevier, vol. 184(2), pages 561-573, January.
    17. Chen, Bin & Hong, Yongmiao, 2012. "Testing For The Markov Property In Time Series," Econometric Theory, Cambridge University Press, vol. 28(1), pages 130-178, February.
    18. Siem Jan Koopman & André Lucas & Pieter Klaassen, 2002. "Pro-Cyclicality, Empirical Credit Cycles, and Capital Buffer Formation," Tinbergen Institute Discussion Papers 02-107/2, Tinbergen Institute.
    19. Figlewski, Stephen & Frydman, Halina & Liang, Weijian, 2012. "Modeling the effect of macroeconomic factors on corporate default and credit rating transitions," International Review of Economics & Finance, Elsevier, vol. 21(1), pages 87-105.
    20. Giesecke, Kay & Longstaff, Francis A. & Schaefer, Stephen & Strebulaev, Ilya, 2011. "Corporate bond default risk: A 150-year perspective," Journal of Financial Economics, Elsevier, vol. 102(2), pages 233-250.

    More about this item

    Keywords

    credit risk; probability of default; Markov chains; migration matrices; confidence estimation; MCMC; portfolio segmentation;
    All these keywords.

    JEL classification:

    • C11 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Bayesian Analysis: General
    • C15 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Statistical Simulation Methods: General
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G21 - Financial Economics - - Financial Institutions and Services - - - Banks; Other Depository Institutions; Micro Finance Institutions; Mortgages
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ris:apltrx:0458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Anatoly Peresetsky (email available below). General contact details of provider: http://appliedeconometrics.cemi.rssi.ru/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.