IDEAS home Printed from https://ideas.repec.org/a/bit/bsrysr/v11y2020i2p36-50n4.html
   My bibliography  Save this article

Deep Learning Predictive Models for Terminal Call Rate Prediction during the Warranty Period

Author

Listed:
  • Ferencek Aljaž

    (Faculty of Organizational Sciences, University of Maribor, Slovenia)

  • Kofjač Davorin

    (Faculty of Organizational Sciences,University of Maribor, Slovenia)

  • Škraba Andrej

    (Faculty of Organizational Sciences, University of Maribor, Slovenia)

  • Sašek Blaž

    (Faculty of Organizational Sciences,University of Maribor, Slovenia)

  • Borštnar Mirjana Kljajić

    (Faculty of Organizational Sciences, University of Maribor, Slovenia)

Abstract

Background: This paper addresses the problem of products’ terminal call rate (TCR) prediction during the warranty period. TCR refers to the information on the amount of funds to be reserved for product repairs during the warranty period. So far, various methods have been used to address this problem, from discrete event simulation and time series, to machine learning predictive models.

Suggested Citation

  • Ferencek Aljaž & Kofjač Davorin & Škraba Andrej & Sašek Blaž & Borštnar Mirjana Kljajić, 2020. "Deep Learning Predictive Models for Terminal Call Rate Prediction during the Warranty Period," Business Systems Research, Sciendo, vol. 11(2), pages 36-50, October.
  • Handle: RePEc:bit:bsrysr:v:11:y:2020:i:2:p:36-50:n:4
    DOI: 10.2478/bsrj-2020-0014
    as

    Download full text from publisher

    File URL: https://doi.org/10.2478/bsrj-2020-0014
    Download Restriction: no

    File URL: https://libkey.io/10.2478/bsrj-2020-0014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Shi, Zhongtuo & Yao, Wei & Zeng, Lingkang & Wen, Jianfeng & Fang, Jiakun & Ai, Xiaomeng & Wen, Jinyu, 2020. "Convolutional neural network-based power system transient stability assessment and instability mode prediction," Applied Energy, Elsevier, vol. 263(C).
    2. J.F. Lawless, 1998. "Statistical Analysis of Product Warranty Data," International Statistical Review, International Statistical Institute, vol. 66(1), pages 41-60, April.
    3. Hyndman, Rob J. & Khandakar, Yeasmin, 2008. "Automatic Time Series Forecasting: The forecast Package for R," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 27(i03).
    4. De Gooijer, Jan G. & Hyndman, Rob J., 2006. "25 years of time series forecasting," International Journal of Forecasting, Elsevier, vol. 22(3), pages 443-473.
    5. Wu, Shaomin & Akbarov, Artur, 2011. "Support vector regression for warranty claim forecasting," European Journal of Operational Research, Elsevier, vol. 213(1), pages 196-204, August.
    6. Arnerić Josip & Poklepović Tea & Teai Juin Wen, 2018. "Neural Network Approach in Forecasting Realized Variance Using High-Frequency Data," Business Systems Research, Sciendo, vol. 9(2), pages 18-34, July.
    7. Murthy, D. N. P. & Djamaludin, I., 2002. "New product warranty: A literature review," International Journal of Production Economics, Elsevier, vol. 79(3), pages 231-260, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nahapetyan Yervand, 2019. "The benefits of the Velvet Revolution in Armenia: Estimation of the short-term economic gains using deep neural networks," Central European Economic Journal, Sciendo, vol. 53(6), pages 286-303, January.
    2. Kourentzes, Nikolaos & Petropoulos, Fotios & Trapero, Juan R., 2014. "Improving forecasting by estimating time series structural components across multiple frequencies," International Journal of Forecasting, Elsevier, vol. 30(2), pages 291-302.
    3. Zhou, Chongwen & Chinnam, Ratna Babu & Dalkiran, Evrim & Korostelev, Alexander, 2017. "Bayesian approach to hazard rate models for early detection of warranty and reliability problems using upstream supply chain information," International Journal of Production Economics, Elsevier, vol. 193(C), pages 316-331.
    4. Kate Murray & Andrea Rossi & Diego Carraro & Andrea Visentin, 2023. "On Forecasting Cryptocurrency Prices: A Comparison of Machine Learning, Deep Learning, and Ensembles," Forecasting, MDPI, vol. 5(1), pages 1-14, January.
    5. Villegas, Marco A. & Pedregal, Diego J., 2019. "Automatic selection of unobserved components models for supply chain forecasting," International Journal of Forecasting, Elsevier, vol. 35(1), pages 157-169.
    6. Nazim Choudhury & Shahadat Uddin, 2016. "Time-aware link prediction to explore network effects on temporal knowledge evolution," Scientometrics, Springer;Akadémiai Kiadó, vol. 108(2), pages 745-776, August.
    7. M. R. Karim & K Suzuki, 2007. "Analysis of warranty data with covariates," Journal of Risk and Reliability, , vol. 221(4), pages 249-255, December.
    8. Shokouhyar, Sajjad & Ahmadi, Sadra & Ashrafzadeh, Mahdi, 2021. "Promoting a novel method for warranty claim prediction based on social network data," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Kim, Jae H. & Wong, Kevin & Athanasopoulos, George & Liu, Shen, 2011. "Beyond point forecasting: Evaluation of alternative prediction intervals for tourist arrivals," International Journal of Forecasting, Elsevier, vol. 27(3), pages 887-901.
    10. Voyant, Cyril & Notton, Gilles & Duchaud, Jean-Laurent & Gutiérrez, Luis Antonio García & Bright, Jamie M. & Yang, Dazhi, 2022. "Benchmarks for solar radiation time series forecasting," Renewable Energy, Elsevier, vol. 191(C), pages 747-762.
    11. Wu, Shaomin & Akbarov, Artur, 2012. "Forecasting warranty claims for recently launched products," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 160-164.
    12. Theodosiou, Marina, 2011. "Forecasting monthly and quarterly time series using STL decomposition," International Journal of Forecasting, Elsevier, vol. 27(4), pages 1178-1195, October.
    13. Hofmeister, Markus & Mosbach, Sebastian & Hammacher, Jörg & Blum, Martin & Röhrig, Gerd & Dörr, Christoph & Flegel, Volker & Bhave, Amit & Kraft, Markus, 2022. "Resource-optimised generation dispatch strategy for district heating systems using dynamic hierarchical optimisation," Applied Energy, Elsevier, vol. 305(C).
    14. Chai, Jian & Zhang, Zhong-Yu & Wang, Shou-Yang & Lai, Kin Keung & Liu, John, 2014. "Aviation fuel demand development in China," Energy Economics, Elsevier, vol. 46(C), pages 224-235.
    15. Wu, Shaomin, 2013. "A review on coarse warranty data and analysis," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 1-11.
    16. Merten, Michael & Rücker, Fabian & Schoeneberger, Ilka & Sauer, Dirk Uwe, 2020. "Automatic frequency restoration reserve market prediction: Methodology and comparison of various approaches," Applied Energy, Elsevier, vol. 268(C).
    17. Anastasiadis, Simon & Anderson, Boyd & Chukova, Stefanka, 2013. "Auto warranty and driving patterns," Reliability Engineering and System Safety, Elsevier, vol. 116(C), pages 126-134.
    18. Hess, Alexander & Spinler, Stefan & Winkenbach, Matthias, 2021. "Real-time demand forecasting for an urban delivery platform," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    19. Yang, Duo & He, Zhen & He, Shuguang, 2016. "Warranty claims forecasting based on a general imperfect repair model considering usage rate," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 147-154.
    20. Gkillas, Konstantinos & Gupta, Rangan & Pierdzioch, Christian, 2020. "Forecasting realized oil-price volatility: The role of financial stress and asymmetric loss," Journal of International Money and Finance, Elsevier, vol. 104(C).

    More about this item

    Keywords

    manufacturing; product lifecycle; management product failure; machine learning; prediction;
    All these keywords.

    JEL classification:

    • C45 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics - - - Neural Networks and Related Topics
    • C53 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Forecasting and Prediction Models; Simulation Methods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bit:bsrysr:v:11:y:2020:i:2:p:36-50:n:4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.sciendo.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.