IDEAS home Printed from https://ideas.repec.org/a/aiy/jnljtr/v11y2025i1p121-148.html
   My bibliography  Save this article

Growing the Global Economy through Climate Change Mitigation: A Causal Mediation Analysis of Environmental Taxes and Green Incentive

Author

Listed:
  • Tony Azaanamaal
  • William Coffie
  • Samuel Fosu

Abstract

The purpose of this study is twofold. First, given the lack of convergence of empirical studies on the direction and impact of climate change on economic growth, this study seeks to present much robust coefficients of climate change impact on economic growth. Second, the study seeks to confirm the double dividend hypothesis that the introduction of environmental taxes in an economy induces growth, and further examine how environmental tax as environmental regulatory policy can be strengthened for effective mitigation. This study regresses a large panel of 104 countries consisting of a total population of countries that have successfully implemented environmental tax over a 26-year period between 1994–2019. The results show that increase in climate change reduces economic growth on all models, with significant adverse effect in the long-run, and across higher distributions of growth. For a change in temperature by one degree Celsius will result in an adverse change in economic growth by 0.463% and 0.424% at 5% significance level using Fixed Effect and Random Effect model respectively, while that of Diff GMM and Sys GMM show that for a unit change in surface temperature, economic growth will decline by 0.996% and 1.08% respectively at 1% significance level. Both environmental taxes and green incentives have significant contingent effects on climate change, with green incentive having a greater effect. Results of the Causal Mediation Analysis (CMA) reveal that the implementation of strong environmental regulatory framework reduces climate change by 0.425% at 1% significance level. In addition, previous studies that examined the implementation of environmental tax and its impact on economic growth have either revealed an adverse effect or a positive effect. This study goes further to estimate the activity levels that yield either effect, thereby providing a bridge between the proponents and opponents of the tax interactive effect of the double dividend hypothesis. This finding is an opportunity for re-examination of the double dividend of environmental taxes in the context of activity level. It further provides clear guidance to policymakers on how to achieve double dividend with the implementation of environmental tax.

Suggested Citation

  • Tony Azaanamaal & William Coffie & Samuel Fosu, 2025. "Growing the Global Economy through Climate Change Mitigation: A Causal Mediation Analysis of Environmental Taxes and Green Incentive," Journal of Tax Reform, Graduate School of Economics and Management, Ural Federal University, vol. 11(1), pages 121-148.
  • Handle: RePEc:aiy:jnljtr:v:11:y:2025:i:1:p:121-148
    DOI: https://doi.org/10.15826/jtr.2025.11.1.195
    as

    Download full text from publisher

    File URL: https://taxreform.ru//fileadmin/user_upload/site_15907/2025/07-Azaanamaal_et_al.pdf
    Download Restriction: no

    File URL: https://libkey.io/https://doi.org/10.15826/jtr.2025.11.1.195?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Distefano, Tiziano & D’Alessandro, Simone, 2023. "Introduction of the carbon tax in Italy: Is there room for a quadruple-dividend effect?," Energy Economics, Elsevier, vol. 120(C).
    2. Lawrence H. Goulder, 1992. "Carbon Tax Design and US Industry Performance," NBER Chapters, in: Tax Policy and the Economy, Volume 6, pages 59-104, National Bureau of Economic Research, Inc.
    3. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sven Resnjanskij & Jens Ruhose & Simon Wiederhold & Ludger Wößmann, 2021. "Mentoring verbessert die Arbeitsmarktchancen von stark benachteiligten Jugendlichen," ifo Schnelldienst, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, vol. 74(02), pages 31-38, February.
    2. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Dimitris Bertsimas & Agni Orfanoudaki & Rory B. Weiner, 2020. "Personalized treatment for coronary artery disease patients: a machine learning approach," Health Care Management Science, Springer, vol. 23(4), pages 482-506, December.
    4. Clément de Chaisemartin & Jaime Ramirez-Cuellar, 2024. "At What Level Should One Cluster Standard Errors in Paired and Small-Strata Experiments?," American Economic Journal: Applied Economics, American Economic Association, vol. 16(1), pages 193-212, January.
    5. Clément de Chaisemartin & Luc Behaghel, 2020. "Estimating the Effect of Treatments Allocated by Randomized Waiting Lists," Econometrica, Econometric Society, vol. 88(4), pages 1453-1477, July.
    6. Bruno Ferman & Cristine Pinto & Vitor Possebom, 2020. "Cherry Picking with Synthetic Controls," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 39(2), pages 510-532, March.
    7. Bonesrønning, Hans & Finseraas, Henning & Hardoy, Ines & Iversen, Jon Marius Vaag & Nyhus, Ole Henning & Opheim, Vibeke & Salvanes, Kari Vea & Sandsør, Astrid Marie Jorde & Schøne, Pål, 2022. "Small-group instruction to improve student performance in mathematics in early grades: Results from a randomized field experiment," Journal of Public Economics, Elsevier, vol. 216(C).
    8. Peydró, José-Luis & Jiménez, Gabriel & Kenan, Huremovic & Moral-Benito, Enrique & Vega-Redondo, Fernando, 2020. "Production and financial networks in interplay: Crisis evidence from supplier-customer and credit registers," CEPR Discussion Papers 15277, C.E.P.R. Discussion Papers.
    9. Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Papers 2107.11732, arXiv.org, revised Apr 2023.
    10. Marie Bjørneby & Annette Alstadsæter & Kjetil Telle, 2018. "Collusive tax evasion by employers and employees. Evidence from a randomized fi eld experiment in Norway," Discussion Papers 891, Statistics Norway, Research Department.
    11. Konrad Menzel, 2021. "Structural Sieves," Papers 2112.01377, arXiv.org, revised Apr 2022.
    12. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    13. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2020. "Sampling‐Based versus Design‐Based Uncertainty in Regression Analysis," Econometrica, Econometric Society, vol. 88(1), pages 265-296, January.
    14. Andrés Elberg & Pedro M. Gardete & Rosario Macera & Carlos Noton, 2019. "Dynamic effects of price promotions: field evidence, consumer search, and supply-side implications," Quantitative Marketing and Economics (QME), Springer, vol. 17(1), pages 1-58, March.
    15. Suresh de Mel & David McKenzie & Christopher Woodruff, 2019. "Labor Drops: Experimental Evidence on the Return to Additional Labor in Microenterprises," American Economic Journal: Applied Economics, American Economic Association, vol. 11(1), pages 202-235, January.
    16. Davide Viviano & Jelena Bradic, 2019. "Synthetic learner: model-free inference on treatments over time," Papers 1904.01490, arXiv.org, revised Aug 2022.
    17. Chenchuan (Mark) Li & Ulrich K. Müller, 2021. "Linear regression with many controls of limited explanatory power," Quantitative Economics, Econometric Society, vol. 12(2), pages 405-442, May.
    18. Jeon, Sung-Hee & Pohl, R. Vincent, 2019. "Medical innovation, education, and labor market outcomes of cancer patients," Journal of Health Economics, Elsevier, vol. 68(C).
    19. Johnsen, Åshild A. & Kvaløy, Ola, 2021. "Conspiracy against the public - An experiment on collusion11“People of the same trade seldom meet together, even for merriment and diversion, but the conversation ends in a conspiracy against the publ," Journal of Behavioral and Experimental Economics (formerly The Journal of Socio-Economics), Elsevier, vol. 94(C).
    20. Pedro Carneiro & Sokbae Lee & Daniel Wilhelm, 2020. "Optimal data collection for randomized control trials," The Econometrics Journal, Royal Economic Society, vol. 23(1), pages 1-31.

    More about this item

    Keywords

    climate change; environmental taxes; green incentive; economic growth; econometric analysis;
    All these keywords.

    JEL classification:

    • C24 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Truncated and Censored Models; Switching Regression Models; Threshold Regression Models
    • C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
    • H23 - Public Economics - - Taxation, Subsidies, and Revenue - - - Externalities; Redistributive Effects; Environmental Taxes and Subsidies
    • O47 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Empirical Studies of Economic Growth; Aggregate Productivity; Cross-Country Output Convergence
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiy:jnljtr:v:11:y:2025:i:1:p:121-148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Natalia Starodubets (email available below). General contact details of provider: https://edirc.repec.org/data/seurfru.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.