IDEAS home Printed from
   My bibliography  Save this article

Intermediate Volatility Forecasts Using Implied Forward Volatility: The Performance of Selected Agricultural Commodity Options


  • Egelkraut, Thorsten M.
  • Garcia, Philip


Options with different maturities can be used to generate an implied forward volatility, a volatility forecast for non-overlapping future time intervals. Using five commodities with varying characteristics, we find that the implied forward volatility dominates forecasts based on historical volatility information, but that the predictive accuracy is affected by the commodity's characteristics. Unbiased and efficient corn and soybeans market forecasts are attributable to the well-established volatility during crucial growing periods. For soybean meal, wheat, and hogs, volatility is less predictable and investors appear to demand a risk premium for bearing volatility risk.

Suggested Citation

  • Egelkraut, Thorsten M. & Garcia, Philip, 2006. "Intermediate Volatility Forecasts Using Implied Forward Volatility: The Performance of Selected Agricultural Commodity Options," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 31(3), pages 1-21, December.
  • Handle: RePEc:ags:jlaare:8637
    DOI: 10.22004/ag.econ.8637

    Download full text from publisher

    File URL:
    Download Restriction: no

    Other versions of this item:

    References listed on IDEAS

    1. Peter F. Christoffersen & Francis X. Diebold, 2000. "How Relevant is Volatility Forecasting for Financial Risk Management?," The Review of Economics and Statistics, MIT Press, vol. 82(1), pages 12-22, February.
    2. Thorsten M. Egelkraut & Philip Garcia & Bruce J. Sherrick, 2007. "The Term Structure of Implied Forward Volatility: Recovery and Informational Content in the Corn Options Market," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 89(1), pages 1-11.
    3. Andersen, Torben G & Bollerslev, Tim, 1998. "Answering the Skeptics: Yes, Standard Volatility Models Do Provide Accurate Forecasts," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 39(4), pages 885-905, November.
    4. Barone-Adesi, Giovanni & Whaley, Robert E, 1987. "Efficient Analytic Approximation of American Option Values," Journal of Finance, American Finance Association, vol. 42(2), pages 301-320, June.
    5. Black, Fischer, 1976. "The pricing of commodity contracts," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 167-179.
    6. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    7. Christensen, B. J. & Prabhala, N. R., 1998. "The relation between implied and realized volatility," Journal of Financial Economics, Elsevier, vol. 50(2), pages 125-150, November.
    Full references (including those not matched with items on IDEAS)


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Brittain, Lee & Garcia, Philip & Irwin, Scott H., 2011. "Live and Feeder Cattle Options Markets: Returns, Risk, and Volatility Forecasting," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 36(1), pages 1-20, April.
    2. Degiannakis, Stavros & Filis, George & Klein, Tony & Walther, Thomas, 2019. "Forecasting Realized Volatility of Agricultural Commodities," MPRA Paper 96267, University Library of Munich, Germany.
    3. Adrian Fernandez‐Perez & Bart Frijns & Ilnara Gafiatullina & Alireza Tourani‐Rad, 2019. "Properties and the predictive power of implied volatility in the New Zealand dairy market," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(5), pages 612-631, May.
    4. Adjemian, Michael K. & Bruno, Valentina G. & Robe, Michel A., 2016. "Forward‐Looking USDA Price Forecasts," 2016 Annual Meeting, July 31-August 2, Boston, Massachusetts 235931, Agricultural and Applied Economics Association.
    5. Guimaraes, Jonathan S. & Cruz, Jose Cesar, 2017. "Future volatility forecast in agricultural commodity markets," 2017 Annual Meeting, July 30-August 1, Chicago, Illinois 258480, Agricultural and Applied Economics Association.
    6. Andres Trujillo-Barrera & Philip Garcia & Mindy L Mallory, 2018. "Short-term price density forecasts in the lean hog futures market," European Review of Agricultural Economics, Foundation for the European Review of Agricultural Economics, vol. 45(1), pages 121-142.

    More about this item




    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:jlaare:8637. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (AgEcon Search). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.