IDEAS home Printed from https://ideas.repec.org/a/ags/jlaare/31194.html
   My bibliography  Save this article

Trends In The Accuracy Of Usda Production Forecasts For Beef And Pork

Author

Listed:
  • Bailey, DeeVon
  • Brorsen, B. Wade

Abstract

Trends in the accuracy of USDA forecasts of beef and pork production and supply are evaluated for the period 1982-96. Findings of the study show that USDA forecasts underestimated production and supply in the 1980s, but this bias has now disappeared. The variance of forecasts also has declined. Thus the accuracy of the forecasts has improved. The most recent USDA forecasts were found to meet the criteria of optimal forecasts, while those of the 1980s were not optimal.

Suggested Citation

  • Bailey, DeeVon & Brorsen, B. Wade, 1998. "Trends In The Accuracy Of Usda Production Forecasts For Beef And Pork," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 23(2), pages 1-11, December.
  • Handle: RePEc:ags:jlaare:31194
    DOI: 10.22004/ag.econ.31194
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/31194/files/23020515.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.31194?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Francis X. Diebold & Jose A. Lopez, 1995. "Forecast evaluation and combination," Research Paper 9525, Federal Reserve Bank of New York.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sanders, Dwight R. & Manfredo, Mark R., 2004. "Predicting Pork Supplies: An Application of Multiple Forecast Encompassing," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 36(3), pages 605-615, December.
    2. Isengildina, Olga & Irwin, Scott H. & Good, Darrel L., 2013. "Do Big Crops Get Bigger and Small Crops Get Smaller? Further Evidence on Smoothing in U.S. Department of Agriculture Forecasts," Journal of Agricultural and Applied Economics, Southern Agricultural Economics Association, vol. 45(1), pages 1-13, February.
    3. MacDonald, Stephen & Ash, Mark & Cooke, Bryce, 2017. "The Evolution of Inefficiency in USDA’s Forecasts of U.S. and World Soybean Markets," MPRA Paper 87545, University Library of Munich, Germany.
    4. Unknown, 2004. "Agricultural Finance Markets in Transition Proceedings of The Annual Meeting of NCT-194 Hosted by the Center for the Study of Rural America, Federal Reserve Bank of Kansas City October 6 - 7, 2003," Research Bulletins 122103, Cornell University, Department of Applied Economics and Management.
    5. Bahram Sanginabadi, 2018. "USDA Forecasts: A meta-analysis study," Papers 1801.06575, arXiv.org.
    6. Karen E. Lewis & Ira J. Altman & Mark R. Manfredo & Dwight R. Sanders, 2015. "Risk Premiums and Forward Basis: Evidence from the Soybean Oil Market," Agribusiness, John Wiley & Sons, Ltd., vol. 31(3), pages 388-398, June.
    7. repec:kap:iaecre:v:15:y:2009:i:4:p:470-482 is not listed on IDEAS
    8. Mark R. Manfredo & Dwight R. Sanders, 2004. "The forecasting performance of implied volatility from live cattle options contracts: Implications for agribusiness risk management," Agribusiness, John Wiley & Sons, Ltd., vol. 20(2), pages 217-230.
    9. Covey, Theodore & Erickson, Kenneth W., 2003. "Evaluating USDA Forecasts of Farm Assets: 1986-2002," 2003 Regional Committee NCT-194, October 6-7, 2003; Kansas City, Missouri 132405, Regional Research Committee NC-1014: Agricultural and Rural Finance Markets in Transition.
    10. Botto, Augusto C. & Isengildina, Olga & Irwin, Scott H. & Good, Darrel L., 2006. "Accuracy Trends and Sources of Forecast Errors in WASDE Balance Sheet Categories for Corn and Soybeans," 2006 Annual meeting, July 23-26, Long Beach, CA 21332, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    11. Sung No & Michael Salassi, 2009. "A Sequential Rationality Test of USDA Preliminary Price Estimates for Selected Program Crops: Rice, Soybeans, and Wheat," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 15(4), pages 470-482, November.
    12. Dwight R. Sanders & Mark R. Manfredo, 2008. "Multiple horizons and information in USDA production forecasts," Agribusiness, John Wiley & Sons, Ltd., vol. 24(1), pages 55-66.
    13. Pruitt, J. Ross & Tonsor, Glynn T. & Brooks, Kathleen R. & Johnson, Rachel J., 2013. "End User Preferences for USDA Market Information," 2013 Annual Meeting, February 2-5, 2013, Orlando, Florida 143007, Southern Agricultural Economics Association.
    14. Siddhartha S. Bora & Ani L. Katchova & Todd H. Kuethe, 2021. "The Rationality of USDA Forecasts under Multivariate Asymmetric Loss," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(3), pages 1006-1033, May.
    15. Kuethe, Todd H. & Hubbs, Todd & Sanders, Dwight R., 2018. "Evaluating the USDA’s Net Farm Income Forecast," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 43(3), September.
    16. Jeffrey B. Mills & Ted C. Schroeder, 2004. "Are cattle on feed report revisions random and does industry anticipate them?," Agribusiness, John Wiley & Sons, Ltd., vol. 20(3), pages 363-374.
    17. Sanders, Dwight R. & Manfredo, Mark R. & Boris, Keith, 2008. "Accuracy and efficiency in the U.S. Department of Energy's short-term supply forecasts," Energy Economics, Elsevier, vol. 30(3), pages 1192-1207, May.
    18. Taylor, Christopher W., 2012. "Market Reactions to USDA Reports: State Analysis of Corn Price Response," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 124661, Agricultural and Applied Economics Association.
    19. Egelkraut, Thorsten M. & Garcia, Philip & Irwin, Scott H. & Good, Darrel L., 2002. "An Evaluation Of Crop Forecast Accuracy For Corn And Soybeans: Usda And Private Information Services," 2002 Conference, April 22-23, 2002, St. Louis, Missouri 19068, NCR-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    20. Manfredo, Mark R. & Sanders, Dwight R., 2002. "The Information Content Of Implied Volatility From Options On Agricultural Futures Contracts," 2002 Conference, April 22-23, 2002, St. Louis, Missouri 19071, NCR-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    21. Sanders, Dwight R. & Manfredo, Mark R., 2002. "Usda Production Forecasts For Pork, Beef, And Broilers: An Evaluation," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 27(1), pages 1-14, July.
    22. Sanders, Dwight R. & Manfredo, Mark R., 2005. "A Test of Forecast Consistency Using USDA Livestock Price Forecasts," 2005 Conference, April 18-19, 2005, St. Louis, Missouri 19042, NCR-134 Conference on Applied Commodity Price Analysis, Forecasting, and Market Risk Management.
    23. Sanders, Dwight R. & Manfredo, Mark R., 2003. "USDA Livestock Price Forecasts: A Comprehensive Evaluation," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 28(2), pages 1-19, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter F. Christoffersen & Francis X. Diebold & Roberto S. Mariano & Anthony S. Tay & Yiu Kuen Tse, 2006. "Direction-of-Change Forecasts Based on Conditional Variance, Skewness and Kurtosis Dynamics : International Evidence," Finance Working Papers 22075, East Asian Bureau of Economic Research.
    2. Wang, Yudong & Wu, Chongfeng, 2012. "Forecasting energy market volatility using GARCH models: Can multivariate models beat univariate models?," Energy Economics, Elsevier, vol. 34(6), pages 2167-2181.
    3. Dopke, Jorg & Fritsche, Ulrich, 2006. "When do forecasters disagree? An assessment of German growth and inflation forecast dispersion," International Journal of Forecasting, Elsevier, vol. 22(1), pages 125-135.
    4. Malte Knüppel & Guido Schultefrankenfeld, 2012. "How Informative Are Central Bank Assessments of Macroeconomic Risks?," International Journal of Central Banking, International Journal of Central Banking, vol. 8(3), pages 87-139, September.
    5. M. Hashem Pesaran & Paolo Zaffaroni, 2004. "Model Averaging and Value-at-Risk Based Evaluation of Large Multi Asset Volatility Models for Risk Management," CESifo Working Paper Series 1358, CESifo.
    6. Kim, Hyun Hak & Swanson, Norman R., 2018. "Mining big data using parsimonious factor, machine learning, variable selection and shrinkage methods," International Journal of Forecasting, Elsevier, vol. 34(2), pages 339-354.
    7. Hecq, A.W. & Götz, T.B. & Urbain, J.R.Y.J., 2012. "Real-time forecast density combinations (forecasting US GDP growth using mixed-frequency data)," Research Memorandum 021, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    8. Francis X. Diebold & Jinyong Hahn & Anthony S. Tay, 1998. "Real-Time Multivariate Density Forecast Evaluation and Calibration: Monitoring the Risk of High-Frequency Returns on Foreign Exchange," Center for Financial Institutions Working Papers 99-05, Wharton School Center for Financial Institutions, University of Pennsylvania.
    9. Laura Coroneo & Fabrizio Iacone, 2020. "Comparing predictive accuracy in small samples using fixed‐smoothing asymptotics," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 35(4), pages 391-409, June.
    10. Antoine Mandel & Amir Sani, 2017. "A Machine Learning Approach to the Forecast Combination Puzzle," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-01317974, HAL.
    11. Patrick Schmidt & Matthias Katzfuss & Tilmann Gneiting, 2021. "Interpretation of point forecasts with unknown directive," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 36(6), pages 728-743, September.
    12. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    13. Francis X. Diebold & Glenn D. Rudebusch, 2001. "Five questions about business cycles," Economic Review, Federal Reserve Bank of San Francisco, pages 1-15.
    14. Michael P. Clements & David I. Harvey, 2010. "Forecast encompassing tests and probability forecasts," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 25(6), pages 1028-1062.
    15. Öğünç, Fethi & Akdoğan, Kurmaş & Başer, Selen & Chadwick, Meltem Gülenay & Ertuğ, Dilara & Hülagü, Timur & Kösem, Sevim & Özmen, Mustafa Utku & Tekatlı, Necati, 2013. "Short-term inflation forecasting models for Turkey and a forecast combination analysis," Economic Modelling, Elsevier, vol. 33(C), pages 312-325.
    16. an de Meulen, Philipp, 2015. "Das RWI-Kurzfristprognosemodell," RWI Konjunkturberichte, RWI - Leibniz-Institut für Wirtschaftsforschung, vol. 66(2), pages 25-46.
    17. Francis X. Diebold & Todd A. Gunther & Anthony S. Tay, "undated". "Evaluating Density Forecasts," CARESS Working Papres 97-18, University of Pennsylvania Center for Analytic Research and Economics in the Social Sciences.
    18. Torben G. Andersen & Tim Bollerslev & Francis X. Diebold,, 2003. "Some Like it Smooth, and Some Like it Rough: Untangling Continuous and Jump Components in Measuring, Modeling, and Forecasting Asset Return Volatility," CFS Working Paper Series 2003/35, Center for Financial Studies.
    19. Giancarlo Marini & Giovanni Piersanti, 2003. "Fiscal Deficits and Currency Crises," CEIS Research Paper 15, Tor Vergata University, CEIS.
    20. Matei, Marius, 2010. "Risk analysis in the evaluation of the international investment opportunities. Advances in modelling and forecasting volatility for risk assessment purposes," Working Papers of Institute for Economic Forecasting 100201, Institute for Economic Forecasting.

    More about this item

    Keywords

    Livestock Production/Industries;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:jlaare:31194. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: https://edirc.repec.org/data/waeaaea.html .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/waeaaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.