Advanced Search
MyIDEAS: Login

Two More Classes of Games with the Fictitious Play Property

Contents:

Author Info

  • Ulrich Berger

    (Vienna University of Economics)

Abstract

Fictitious play is the oldest and most studied learning process for games. Since the already classical result for zero-sum games, convergence of beliefs to the set of Nash equilibria has been established for some important classes of games, including weighted potential games, supermodular games with diminishing returns, and 3x3 supermodular games. Extending these results, we establish convergence for ordinal potential games and quasi-supermodular games with diminishing returns. As a by-product we obtain convergence for 3xm and 4x4 quasi-supermodular games.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://128.118.178.162/eps/game/papers/0408/0408003.pdf
Download Restriction: no

Bibliographic Info

Paper provided by EconWPA in its series Game Theory and Information with number 0408003.

as in new window
Length: 17 pages
Date of creation: 31 Aug 2004
Date of revision:
Handle: RePEc:wpa:wuwpga:0408003

Note: Type of Document - pdf; pages: 17
Contact details of provider:
Web page: http://128.118.178.162

Related research

Keywords: Fictitious Play; Learning Process; Ordinal Potential Games; Quasi-Supermodular Games;

Find related papers by JEL classification:

This paper has been announced in the following NEP Reports:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Vijay Krishna & Tomas Sjostrom, 1995. "On the Convergence of Fictitious Play," Game Theory and Information 9503003, EconWPA.
  2. Milgrom, Paul & Shannon, Chris, 1994. "Monotone Comparative Statics," Econometrica, Econometric Society, vol. 62(1), pages 157-80, January.
  3. Drew Fudenberg & David Kreps, 2010. "Learning Mixed Equilibria," Levine's Working Paper Archive 415, David K. Levine.
  4. Hopkins, Ed, 1999. "A Note on Best Response Dynamics," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 138-150, October.
  5. Metrick, Andrew & Polak, Ben, 1994. "Fictitious Play in 2 x 2 Games: A Geometric Proof of Convergence," Economic Theory, Springer, vol. 4(6), pages 923-33, October.
  6. Bulow, Jeremy I & Geanakoplos, John D & Klemperer, Paul D, 1985. "Multimarket Oligopoly: Strategic Substitutes and Complements," Journal of Political Economy, University of Chicago Press, vol. 93(3), pages 488-511, June.
  7. Harris, Christopher, 1998. "On the Rate of Convergence of Continuous-Time Fictitious Play," Games and Economic Behavior, Elsevier, vol. 22(2), pages 238-259, February.
  8. Monderer, Dov & Sela, Aner, 1996. "A2 x 2Game without the Fictitious Play Property," Games and Economic Behavior, Elsevier, vol. 14(1), pages 144-148, May.
  9. Dov Monderer & Dov Samet & Aner Sela, 2010. "Belief Affirming in Learning Processes," Levine's Working Paper Archive 420, David K. Levine.
  10. Vives, Xavier, 1990. "Nash equilibrium with strategic complementarities," Journal of Mathematical Economics, Elsevier, vol. 19(3), pages 305-321.
  11. Benaim, Michel & Hirsch, Morris W., 1999. "Mixed Equilibria and Dynamical Systems Arising from Fictitious Play in Perturbed Games," Games and Economic Behavior, Elsevier, vol. 29(1-2), pages 36-72, October.
  12. Tetsuo Yamamori & Satoru Takahashi, 2002. "The pure Nash equilibrium property and the quasi-acyclic condition," Economics Bulletin, AccessEcon, vol. 3(22), pages 1-6.
  13. Garcia, Alfredo & Reaume, Daniel & Smith, Robert L., 2000. "Fictitious play for finding system optimal routings in dynamic traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(2), pages 147-156, February.
  14. Foster, Dean P. & Young, H. Peyton, 1998. "On the Nonconvergence of Fictitious Play in Coordination Games," Games and Economic Behavior, Elsevier, vol. 25(1), pages 79-96, October.
  15. Ulrich Berger, 2002. "Best response dynamics for role games," International Journal of Game Theory, Springer, vol. 30(4), pages 527-538.
  16. Fudenberg, Drew & Levine, David, 1998. "Learning in games," European Economic Review, Elsevier, vol. 42(3-5), pages 631-639, May.
  17. Milgrom, Paul & Roberts, John, 1991. "Adaptive and sophisticated learning in normal form games," Games and Economic Behavior, Elsevier, vol. 3(1), pages 82-100, February.
  18. Josef Hofbauer & William H. Sandholm, 2002. "On the Global Convergence of Stochastic Fictitious Play," Econometrica, Econometric Society, vol. 70(6), pages 2265-2294, November.
  19. Ulrich Berger, 2003. "Continuous Fictitious Play via Projective Geometry," Game Theory and Information 0303004, EconWPA.
  20. Berger, Ulrich, 2005. "Fictitious play in 2 x n games," Journal of Economic Theory, Elsevier, vol. 120(2), pages 139-154, February.
  21. repec:ebl:ecbull:v:3:y:2002:i:22:p:1-6 is not listed on IDEAS
  22. I. Gilboa & A. Matsui, 2010. "Social Stability and Equilibrium," Levine's Working Paper Archive 534, David K. Levine.
  23. A. Gaunersdorfer & J. Hofbauer, 2010. "Fictitious Play, Shapley Polygons and the Replicator Equation," Levine's Working Paper Archive 438, David K. Levine.
  24. Matsui, Akihiko, 1992. "Best response dynamics and socially stable strategies," Journal of Economic Theory, Elsevier, vol. 57(2), pages 343-362, August.
  25. Jordan J. S., 1993. "Three Problems in Learning Mixed-Strategy Nash Equilibria," Games and Economic Behavior, Elsevier, vol. 5(3), pages 368-386, July.
  26. Monderer, Dov & Shapley, Lloyd S., 1996. "Fictitious Play Property for Games with Identical Interests," Journal of Economic Theory, Elsevier, vol. 68(1), pages 258-265, January.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Ulrich Berger, 2005. "Brown's Original Fictitious Play," Game Theory and Information 0503008, EconWPA.
  2. Leslie, David S. & Collins, E.J., 2006. "Generalised weakened fictitious play," Games and Economic Behavior, Elsevier, vol. 56(2), pages 285-298, August.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:wpa:wuwpga:0408003. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (EconWPA).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.