IDEAS home Printed from https://ideas.repec.org/a/wly/wirecc/v11y2020i4ne647.html
   My bibliography  Save this article

A review of agent‐based modeling of climate‐energy policy

Author

Listed:
  • Juana Castro
  • Stefan Drews
  • Filippos Exadaktylos
  • Joël Foramitti
  • Franziska Klein
  • Théo Konc
  • Ivan Savin
  • Jeroen van den Bergh

Abstract

Agent‐based models (ABMs) have recently seen much application to the field of climate mitigation policies. They offer a more realistic description of micro behavior than traditional climate policy models by allowing for agent heterogeneity, bounded rationality and nonmarket interactions over social networks. This enables the analysis of a broader spectrum of policies. Here, we review 61 ABM studies addressing climate‐energy policy aimed at emissions reduction, product and technology diffusion, and energy conservation. This covers a broad set of instruments of climate policy, ranging from carbon taxation, and emissions trading through adoption subsidies to information provision tools such as smart meters and eco‐labels. Our treatment pays specific attention to behavioral assumptions and the structure of social networks. We offer suggestions for future research with ABMs to answer neglected policy questions. This article is categorized under: Climate Economics > Economics of Mitigation

Suggested Citation

  • Juana Castro & Stefan Drews & Filippos Exadaktylos & Joël Foramitti & Franziska Klein & Théo Konc & Ivan Savin & Jeroen van den Bergh, 2020. "A review of agent‐based modeling of climate‐energy policy," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(4), July.
  • Handle: RePEc:wly:wirecc:v:11:y:2020:i:4:n:e647
    DOI: 10.1002/wcc.647
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/wcc.647
    Download Restriction: no

    File URL: https://libkey.io/10.1002/wcc.647?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    2. Apesteguia, Jose & Huck, Steffen & Oechssler, Jorg, 2007. "Imitation--theory and experimental evidence," Journal of Economic Theory, Elsevier, vol. 136(1), pages 217-235, September.
    3. Alastair Brown, 2014. "Adaptation and mitigation," Nature Climate Change, Nature, vol. 4(10), pages 860-860, October.
    4. Xavier D'Haultfœuille & Pauline Givord & Xavier Boutin, 2014. "The Environmental Effect of Green Taxation: The Case of the French Bonus/Malus," Economic Journal, Royal Economic Society, vol. 124(578), pages 444-480, August.
    5. Francesco Lamperti & Antoine Mandel & Mauro Napoletano & Alessandro Sapio & Andrea Roventini & Tomas Balint & Igor Khorenzhenko, 2017. "Taming macroeconomic instability," PSE-Ecole d'économie de Paris (Postprint) hal-03399574, HAL.
    6. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2018. "Faraway, So Close: Coupled Climate and Economic Dynamics in an Agent-based Integrated Assessment Model," Ecological Economics, Elsevier, vol. 150(C), pages 315-339.
    7. Köhler, Jonathan & Whitmarsh, Lorraine & Nykvist, Björn & Schilperoord, Michel & Bergman, Noam & Haxeltine, Alex, 2009. "A transitions model for sustainable mobility," Ecological Economics, Elsevier, vol. 68(12), pages 2985-2995, October.
    8. Michael Muthukrishna & Joseph Henrich, 2019. "A problem in theory," Nature Human Behaviour, Nature, vol. 3(3), pages 221-229, March.
    9. Kraan, O. & Kramer, G.J. & Nikolic, I., 2018. "Investment in the future electricity system - An agent-based modelling approach," Energy, Elsevier, vol. 151(C), pages 569-580.
    10. Palmer, J. & Sorda, G. & Madlener, R., 2015. "Modeling the diffusion of residential photovoltaic systems in Italy: An agent-based simulation," Technological Forecasting and Social Change, Elsevier, vol. 99(C), pages 106-131.
    11. Cowan, Robin & Jonard, Nicolas, 2004. "Network structure and the diffusion of knowledge," Journal of Economic Dynamics and Control, Elsevier, vol. 28(8), pages 1557-1575, June.
    12. Frank Beckenbach & Ramón Briegel, 2010. "Multi-agent modeling of economic innovation dynamics and its implications for analyzing emission impacts," International Economics and Economic Policy, Springer, vol. 7(2), pages 317-341, August.
    13. John H. Miller & Scott E. Page, 2007. "Social Science in Between, from Complex Adaptive Systems: An Introduction to Computational Models of Social Life," Introductory Chapters, in: Complex Adaptive Systems: An Introduction to Computational Models of Social Life, Princeton University Press.
    14. Tang, Ling & Wu, Jiaqian & Yu, Lean & Bao, Qin, 2015. "Carbon emissions trading scheme exploration in China: A multi-agent-based model," Energy Policy, Elsevier, vol. 81(C), pages 152-169.
    15. Savin, Ivan & Egbetokun, Abiodun, 2016. "Emergence of innovation networks from R&D cooperation with endogenous absorptive capacity," Journal of Economic Dynamics and Control, Elsevier, vol. 64(C), pages 82-103.
    16. Peter Winker & Manfred Gilli & Vahidin Jeleskovic, 2007. "An objective function for simulation based inference on exchange rate data," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 2(2), pages 125-145, December.
    17. Mueller, Michel G. & de Haan, Peter, 2009. "How much do incentives affect car purchase? Agent-based microsimulation of consumer choice of new cars--Part I: Model structure, simulation of bounded rationality, and model validation," Energy Policy, Elsevier, vol. 37(3), pages 1072-1082, March.
    18. Matthias Mueller & Kristina Bogner & Tobias Buchmann & Muhamed Kudic, 2017. "The effect of structural disparities on knowledge diffusion in networks: an agent-based simulation model," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 12(3), pages 613-634, October.
    19. Paul Grauwe, 2011. "Animal spirits and monetary policy," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 47(2), pages 423-457, June.
    20. Taylor Davis & Erin P. Hennes & Leigh Raymond, 2018. "Cultural evolution of normative motivations for sustainable behaviour," Nature Sustainability, Nature, vol. 1(5), pages 218-224, May.
    21. Tesfatsion, Leigh & Judd, Kenneth L., 2006. "Handbook of Computational Economics, Vol. 2: Agent-Based Computational Economics," Staff General Research Papers Archive 10368, Iowa State University, Department of Economics.
    22. Andrea Saltelli, 2019. "A short comment on statistical versus mathematical modelling," Nature Communications, Nature, vol. 10(1), pages 1-3, December.
    23. Rengs, Bernhard & Scholz-Wäckerle, Manuel & van den Bergh, Jeroen, 2020. "Evolutionary macroeconomic assessment of employment and innovation impacts of climate policy packages," Journal of Economic Behavior & Organization, Elsevier, vol. 169(C), pages 332-368.
    24. Koen Frenken, 2006. "Technological innovation and complexity theory," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 15(2), pages 137-155.
    25. Tesfatsion, Leigh, 2006. "Agent-Based Computational Economics: A Constructive Approach to Economic Theory," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 16, pages 831-880, Elsevier.
    26. Matthew Rabin, 1998. "Psychology and Economics," Journal of Economic Literature, American Economic Association, vol. 36(1), pages 11-46, March.
    27. Andrea L. Hicks & Thomas L. Theis & Moira L. Zellner, 2015. "Emergent Effects of Residential Lighting Choices: Prospects for Energy Savings," Journal of Industrial Ecology, Yale University, vol. 19(2), pages 285-295, April.
    28. Lee, Kangil & Han, Taek-Whan, 2016. "How vulnerable is the emissions market to transaction costs?: An ABMS Approach," Energy Policy, Elsevier, vol. 90(C), pages 273-286.
    29. Schlüter, Maja & Baeza, Andres & Dressler, Gunnar & Frank, Karin & Groeneveld, Jürgen & Jager, Wander & Janssen, Marco A. & McAllister, Ryan R.J. & Müller, Birgit & Orach, Kirill & Schwarz, Nina & Wij, 2017. "A framework for mapping and comparing behavioural theories in models of social-ecological systems," Ecological Economics, Elsevier, vol. 131(C), pages 21-35.
    30. Taylor Davis & Erin P. Hennes & Leigh Raymond, 2018. "Publisher Correction: Cultural evolution of normative motivations for sustainable behaviour," Nature Sustainability, Nature, vol. 1(7), pages 375-375, July.
    31. al Irsyad, M. Indra & Halog, Anthony & Nepal, Rabindra, 2018. "Estimating the impacts of financing support policies towards photovoltaic market in Indonesia: A social-energy-economy-environment (SE3) model simulation," Working Papers 2018-09, University of Tasmania, Tasmanian School of Business and Economics.
    32. Mikhail Anufriev & Cars Hommes, 2012. "Evolutionary Selection of Individual Expectations and Aggregate Outcomes in Asset Pricing Experiments," American Economic Journal: Microeconomics, American Economic Association, vol. 4(4), pages 35-64, November.
    33. James J. Heckman, 2001. "Micro Data, Heterogeneity, and the Evaluation of Public Policy: Nobel Lecture," Journal of Political Economy, University of Chicago Press, vol. 109(4), pages 673-748, August.
    34. Peter Winker and Manfred Gilli, 2001. "Indirect Estimation of the Parameters of Agent Based Models of Financial Markets," Computing in Economics and Finance 2001 59, Society for Computational Economics.
    35. Veit, Daniel J. & Weidlich, Anke & Krafft, Jacob A., 2009. "An agent-based analysis of the German electricity market with transmission capacity constraints," Energy Policy, Elsevier, vol. 37(10), pages 4132-4144, October.
    36. Perez-Mujica, Luisa & Duncan, Roderick & Bossomaier, Terry, 2014. "Using agent-based models to design social marketing campaign," Australasian marketing journal, Elsevier, vol. 22(1), pages 36-44.
    37. Leigh Tesfatsion & Kenneth L. Judd (ed.), 2006. "Handbook of Computational Economics," Handbook of Computational Economics, Elsevier, edition 1, volume 2, number 2.
    38. J. Farmer & Cameron Hepburn & Penny Mealy & Alexander Teytelboym, 2015. "A Third Wave in the Economics of Climate Change," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(2), pages 329-357, October.
    39. J. C. J. H. Aerts & W. J. Botzen & K. C. Clarke & S. L. Cutter & J. W. Hall & B. Merz & E. Michel-Kerjan & J. Mysiak & S. Surminski & H. Kunreuther, 2018. "Integrating human behaviour dynamics into flood disaster risk assessment," Nature Climate Change, Nature, vol. 8(3), pages 193-199, March.
    40. Schelling, Thomas C, 1969. "Models of Segregation," American Economic Review, American Economic Association, vol. 59(2), pages 488-493, May.
    41. Babatunde, Kazeem Alasinrin & Begum, Rawshan Ara & Said, Fathin Faizah, 2017. "Application of computable general equilibrium (CGE) to climate change mitigation policy: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 61-71.
    42. Felix Creutzig & Joyashree Roy & William F. Lamb & Inês M. L. Azevedo & Wändi Bruine de Bruin & Holger Dalkmann & Oreane Y. Edelenbosch & Frank W. Geels & Arnulf Grubler & Cameron Hepburn & Edgar G. H, 2018. "Towards demand-side solutions for mitigating climate change," Nature Climate Change, Nature, vol. 8(4), pages 260-263, April.
    43. Lawrence Goulder, 1995. "Environmental taxation and the double dividend: A reader's guide," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 2(2), pages 157-183, August.
    44. Garavaglia, Christian, 2010. "Modelling industrial dynamics with "History-friendly" simulations," Structural Change and Economic Dynamics, Elsevier, vol. 21(4), pages 258-275, November.
    45. Wang, Ge & Zhang, Qi & Li, Yan & Li, Hailong, 2018. "Policy simulation for promoting residential PV considering anecdotal information exchanges based on social network modelling," Applied Energy, Elsevier, vol. 223(C), pages 1-10.
    46. Jason Shogren, 2012. "Behavioural Economics and Environmental Incentives," OECD Environment Working Papers 49, OECD Publishing.
    47. Daniel Kahneman, 2003. "Maps of Bounded Rationality: Psychology for Behavioral Economics," American Economic Review, American Economic Association, vol. 93(5), pages 1449-1475, December.
    48. Korzinov, Vladimir & Savin, Ivan, 2018. "General Purpose Technologies as an emergent property," Technological Forecasting and Social Change, Elsevier, vol. 129(C), pages 88-104.
    49. John H. Miller & Scott E. Page, 2007. "Complexity in Social Worlds, from Complex Adaptive Systems: An Introduction to Computational Models of Social Life," Introductory Chapters, in: Complex Adaptive Systems: An Introduction to Computational Models of Social Life, Princeton University Press.
    50. Adamos Adamou & Sofronis Clerides & Theodoros Zachariadis, 2014. "Welfare Implications of Car Feebates: A Simulation Analysis," Economic Journal, Royal Economic Society, vol. 124(578), pages 420-443, August.
    51. Stefano Breschi & Francesco Lissoni, 2009. "Mobility of skilled workers and co-invention networks: an anatomy of localized knowledge flows," Journal of Economic Geography, Oxford University Press, vol. 9(4), pages 439-468, July.
    52. José A. Pellerano & Michael K. Price & Steven L. Puller & Gonzalo E. Sánchez, 2017. "Do Extrinsic Incentives Undermine Social Norms? Evidence from a Field Experiment in Energy Conservation," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(3), pages 413-428, July.
    53. Sylvie Geisendorf, 2016. "The impact of personal beliefs on climate change: the “battle of perspectives” revisited," Journal of Evolutionary Economics, Springer, vol. 26(3), pages 551-580, July.
    54. Lee, Timothy & Yao, Runming & Coker, Phil, 2014. "An analysis of UK policies for domestic energy reduction using an agent based tool," Energy Policy, Elsevier, vol. 66(C), pages 267-279.
    55. Paola D’Orazio & Marco Valente, 2018. "Do Financial Constraints Hamper Environmental Innovation Diffusion? An Agent-Based Approach," SPRU Working Paper Series 2018-10, SPRU - Science Policy Research Unit, University of Sussex Business School.
    56. Richstein, Jörn C. & Chappin, Émile J.L. & de Vries, Laurens J., 2015. "Adjusting the CO2 cap to subsidised RES generation: Can CO2 prices be decoupled from renewable policy?," Applied Energy, Elsevier, vol. 156(C), pages 693-702.
    57. Eppstein, Margaret J. & Grover, David K. & Marshall, Jeffrey S. & Rizzo, Donna M., 2011. "An agent-based model to study market penetration of plug-in hybrid electric vehicles," Energy Policy, Elsevier, vol. 39(6), pages 3789-3802, June.
    58. Tina Balke & Nigel Gilbert, 2014. "How Do Agents Make Decisions? A Survey," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 17(4), pages 1-13.
    59. Safarzyńska, Karolina & van den Bergh, Jeroen C.J.M., 2018. "A higher rebound effect under bounded rationality: Interactions between car mobility and electricity generation," Energy Economics, Elsevier, vol. 74(C), pages 179-196.
    60. Maya Sopha, Bertha & Klöckner, Christian A. & Hertwich, Edgar G., 2011. "Exploring policy options for a transition to sustainable heating system diffusion using an agent-based simulation," Energy Policy, Elsevier, vol. 39(5), pages 2722-2729, May.
    61. A. van Der Vooren & Eric Brouillat, 2015. "Evaluating CO 2 reduction policy mixes in the automotive sector," Post-Print hal-03116360, HAL.
    62. repec:hal:spmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    63. Monasterolo, Irene & Raberto, Marco, 2018. "The EIRIN Flow-of-funds Behavioural Model of Green Fiscal Policies and Green Sovereign Bonds," Ecological Economics, Elsevier, vol. 144(C), pages 228-243.
    64. Frank Beckenbach & Maria Daskalakis & David Hofmann, 2018. "Agent-Based Analysis of Industrial Dynamics and Paths of Environmental Policy: The Case of Non-renewable Energy Production in Germany," Computational Economics, Springer;Society for Computational Economics, vol. 52(3), pages 953-994, October.
    65. de Haan, Peter & Mueller, Michel G. & Scholz, Roland W., 2009. "How much do incentives affect car purchase? Agent-based microsimulation of consumer choice of new cars--Part II: Forecasting effects of feebates based on energy-efficiency," Energy Policy, Elsevier, vol. 37(3), pages 1083-1094, March.
    66. Richard H. Thaler, 2016. "Behavioral Economics: Past, Present, and Future," American Economic Review, American Economic Association, vol. 106(7), pages 1577-1600, July.
    67. Wu, Xifeng & Xu, Yuechao & Lou, Yuting & Chen, Yu, 2018. "Low carbon transition in a distributed energy system regulated by localized energy markets," Energy Policy, Elsevier, vol. 122(C), pages 474-485.
    68. Calum Brown & Peter Alexander & Sascha Holzhauer & Mark D. A. Rounsevell, 2017. "Behavioral models of climate change adaptation and mitigation in land‐based sectors," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 8(2), March.
    69. Safarzyńska, Karolina & van den Bergh, Jeroen C.J.M., 2017. "Financial stability at risk due to investing rapidly in renewable energy," Energy Policy, Elsevier, vol. 108(C), pages 12-20.
    70. Tang, Ling & Wu, Jiaqian & Yu, Lean & Bao, Qin, 2017. "Carbon allowance auction design of China's emissions trading scheme: A multi-agent-based approach," Energy Policy, Elsevier, vol. 102(C), pages 30-40.
    71. Delre, S.A. & Jager, W. & Bijmolt, T.H.A. & Janssen, M.A., 2007. "Targeting and timing promotional activities: An agent-based model for the takeoff of new products," Journal of Business Research, Elsevier, vol. 60(8), pages 826-835, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Turco, Enrico & Bazzana, Davide & Rizzati, Massimiliano & Ciola, Emanuele & Vergalli, Sergio, 2023. "Energy price shocks and stabilization policies in the MATRIX model," Energy Policy, Elsevier, vol. 177(C).
    2. Tianran Ding & Wouter Achten, 2023. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/359527, ULB -- Universite Libre de Bruxelles.
    3. Abba, Z.Y.I. & Balta-Ozkan, N. & Hart, P., 2022. "A holistic risk management framework for renewable energy investments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    4. Paola D'Orazio & Jessica Reale & Anh Duy Pham, 2023. "Climate-induced liquidity crises: interbank exposures and macroprudential implications," Chemnitz Economic Papers 059, Department of Economics, Chemnitz University of Technology.
    5. Lilit Popoyan & Alessandro Sapio, 2023. "Prevention first vs. cap-and-trade policies in an agent-based integrated assessment model with GHG emissions permits," LEM Papers Series 2023/29, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    6. Wolf Rogowski & Wolfram Elsner, 2021. "How economics can help mitigate climate change - a critical review and conceptual analysis of economic paradigms," Bremen Papers on Economics & Innovation 2106, University of Bremen, Faculty of Business Studies and Economics.
    7. Nuñez-Jimenez, Alejandro & Knoeri, Christof & Hoppmann, Joern & Hoffmann, Volker H., 2022. "Beyond innovation and deployment: Modeling the impact of technology-push and demand-pull policies in Germany's solar policy mix," Research Policy, Elsevier, vol. 51(10).
    8. Emanuele Ciola & Enrico Turco & Andrea Gurgone & Davide Bazzana & Sergio Vergalli & Francesco Menoncin, 2022. "Charging the macroeconomy with an energy sector: an agent-based model," Working Papers 2022.09, Fondazione Eni Enrico Mattei.
    9. Ciola, Emanuele & Turco, Enrico & Gurgone, Andrea & Bazzana, Davide & Vergalli, Sergio & Menoncin, Francesco, 2023. "Enter the MATRIX model:a Multi-Agent model for Transition Risks with application to energy shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    10. Zha, Donglan & Jiang, Pansong & Zhang, Chaoqun & Xia, Dan & Cao, Yang, 2023. "Positive synergy or negative synergy: An assessment of the carbon emission reduction effect of renewable energy policy mixes on China's power sector," Energy Policy, Elsevier, vol. 183(C).
    11. Tianran Ding & Wouter Achten, 2022. "Coupling agent-based modeling with territorial LCA to support agricultural land-use planning," ULB Institutional Repository 2013/352782, ULB -- Universite Libre de Bruxelles.
    12. Foramitti, Joël, 2023. "A framework for agent-based models of human needs and ecological limits," Ecological Economics, Elsevier, vol. 204(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emiliano Brancaccio & Mauro Gallegati & Raffaele Giammetti, 2022. "Neoclassical influences in agent‐based literature: A systematic review," Journal of Economic Surveys, Wiley Blackwell, vol. 36(2), pages 350-385, April.
    2. Balint, T. & Lamperti, F. & Mandel, A. & Napoletano, M. & Roventini, A. & Sapio, A., 2017. "Complexity and the Economics of Climate Change: A Survey and a Look Forward," Ecological Economics, Elsevier, vol. 138(C), pages 252-265.
    3. Giorgio Fagiolo & Mattia Guerini & Francesco Lamperti & Alessio Moneta & Andrea Roventini, 2017. "Validation of Agent-Based Models in Economics and Finance," LEM Papers Series 2017/23, Laboratory of Economics and Management (LEM), Sant'Anna School of Advanced Studies, Pisa, Italy.
    4. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2020. "Climate change and green transitions in an agent-based integrated assessment model," Technological Forecasting and Social Change, Elsevier, vol. 153(C).
    5. Zhang, Qi & Wu, Xifeng & Chen, Yu, 2022. "Is economic crisis an opportunity for realizing the low-carbon transition? A simulation study on the interaction between economic cycle and energy regulation policy," Energy Policy, Elsevier, vol. 168(C).
    6. Ciola, Emanuele & Turco, Enrico & Gurgone, Andrea & Bazzana, Davide & Vergalli, Sergio & Menoncin, Francesco, 2023. "Enter the MATRIX model:a Multi-Agent model for Transition Risks with application to energy shocks," Journal of Economic Dynamics and Control, Elsevier, vol. 146(C).
    7. repec:hal:spmain:info:hdl:2441/1nlv566svi86iqtetenms15tc4 is not listed on IDEAS
    8. repec:hal:spmain:info:hdl:2441/5qr7f0k4sk8rbq4do5u6v70rm0 is not listed on IDEAS
    9. Auke Hoekstra & Maarten Steinbuch & Geert Verbong, 2017. "Creating Agent-Based Energy Transition Management Models That Can Uncover Profitable Pathways to Climate Change Mitigation," Complexity, Hindawi, vol. 2017, pages 1-23, December.
    10. Mauro Napoletano, 2018. "A Short Walk on the Wild Side: Agent-Based Models and their Implications for Macroeconomic Analysis," Revue de l'OFCE, Presses de Sciences-Po, vol. 0(3), pages 257-281.
    11. Bernardo A. Furtado & Miguel A. Fuentes & Claudio J. Tessone, 2019. "Policy Modeling and Applications: State-of-the-Art and Perspectives," Complexity, Hindawi, vol. 2019, pages 1-11, February.
    12. Lamperti, F. & Dosi, G. & Napoletano, M. & Roventini, A. & Sapio, A., 2018. "Faraway, So Close: Coupled Climate and Economic Dynamics in an Agent-based Integrated Assessment Model," Ecological Economics, Elsevier, vol. 150(C), pages 315-339.
    13. Ciarli, Tommaso & Savona, Maria, 2019. "Modelling the Evolution of Economic Structure and Climate Change: A Review," Ecological Economics, Elsevier, vol. 158(C), pages 51-64.
    14. repec:hal:spmain:info:hdl:2441/2qdhj5485p93jrnf08s1meeap9 is not listed on IDEAS
    15. Naqvi, Asjad & Stockhammer, Engelbert, 2018. "Directed Technological Change in a Post-Keynesian Ecological Macromodel," Ecological Economics, Elsevier, vol. 154(C), pages 168-188.
    16. repec:hal:spmain:info:hdl:2441/4hs7liq1f49gh9chdf7r17gam6 is not listed on IDEAS
    17. Tommaso Ciarli & Karolina Safarzynska, 2020. "Sustainability and Industrial Challenge: The Hindering Role of Complexity," SPRU Working Paper Series 2020-18, SPRU - Science Policy Research Unit, University of Sussex Business School.
    18. Ciola, Emanuele & Turco, Enrico & Gurgone, Andrea & Bazzana, Davide & Vergalli, Sergio & Menoncin, Francesco, 2022. "Charging the macroeconomy with an energy sector: an agent-based model," FEEM Working Papers 319877, Fondazione Eni Enrico Mattei (FEEM).
    19. Foramitti, Joël & Savin, Ivan & van den Bergh, Jeroen C.J.M., 2021. "Emission tax vs. permit trading under bounded rationality and dynamic markets," Energy Policy, Elsevier, vol. 148(PB).
    20. Lamperti, Francesco & Bosetti, Valentina & Roventini, Andrea & Tavoni, Massimo & Treibich, Tania, 2021. "Three green financial policies to address climate risks," Journal of Financial Stability, Elsevier, vol. 54(C).
    21. Francesco Lamperti & Giovanni Dosi & Mauro Napoletano & Andrea Roventini & Alessandro Sapio, 2018. "And then he wasn't a she : Climate change and green transitions in an agent-based integrated assessment model," Working Papers hal-03443464, HAL.
    22. Zhang, Hui & Cao, Libin & Zhang, Bing, 2017. "Emissions trading and technology adoption: An adaptive agent-based analysis of thermal power plants in China," Resources, Conservation & Recycling, Elsevier, vol. 121(C), pages 23-32.
    23. Richard Holt & J. Barkley Rosser & David Colander, 2011. "The Complexity Era in Economics," Review of Political Economy, Taylor & Francis Journals, vol. 23(3), pages 357-369.
    24. Lamperti, Francesco & Roventini, Andrea & Sani, Amir, 2018. "Agent-based model calibration using machine learning surrogates," Journal of Economic Dynamics and Control, Elsevier, vol. 90(C), pages 366-389.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:wirecc:v:11:y:2020:i:4:n:e647. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1757-7799 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.