IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v74y2018icp179-196.html
   My bibliography  Save this article

A higher rebound effect under bounded rationality: Interactions between car mobility and electricity generation

Author

Listed:
  • Safarzyńska, Karolina
  • van den Bergh, Jeroen C.J.M.

Abstract

It is widely believed that with the right economic incentives, electrification of transport can significantly reduce CO2 emissions by 2050. Estimates of future emissions from car transport tend, though, to ignore technological change in electricity generation and bounded rationality of consumers. In this article we address these two shortcomings by developing a novel approach that captures the dynamic interdependence between the car industry and electricity generation. We assess how incorporating realistic behaviors affects estimates of emissions from passengers cars in four models of vehicle adoption, namely with rational, myopic, habit-oriented and loss-aversive consumers. This is then combined with three behavioral models of travel distance, describing rational, habitual and loss-averse drivers. In the electricity sector, technological change occurs through installation of new power plants embodying different energy technologies. This allows us to study the impact of policies promoting renewable energy on the price of electricity, and indirectly on the rate of adoption of electric cars. The findings indicate that substituting renewable energy for fossil fuels in electricity generation by 2050 can triple the electricity price. This undermines the positive effect of subsidies on electric car adoption, with the specific effect depending on particular behaviors assumed to hold. In addition, we show that myopic and loss-averse consumers buy on average less fuel-efficient cars than rational agents. Habitual drivers tend to commute larger distances than rational ones, as they do not adjust their behavior optimally to changes in fuel prices and improvements in fuel efficiencies. These behavioral effects contribute to the rebound effect. Our findings indicate that vehicle choice and driving under rational behavior generate consistently the lowest estimates of life-cycle emissions. By ignoring more realistic behaviors consistent with bounded rationality, current studies underestimate emissions from passenger cars, in turn contributing to overly optimistic expectations about policy impacts.

Suggested Citation

  • Safarzyńska, Karolina & van den Bergh, Jeroen C.J.M., 2018. "A higher rebound effect under bounded rationality: Interactions between car mobility and electricity generation," Energy Economics, Elsevier, vol. 74(C), pages 179-196.
  • Handle: RePEc:eee:eneeco:v:74:y:2018:i:c:p:179-196
    DOI: 10.1016/j.eneco.2018.06.006
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S014098831830224X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2018.06.006?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gössling, Stefan & Metzler, Daniel, 2017. "Germany's climate policy: Facing an automobile dilemma," Energy Policy, Elsevier, vol. 105(C), pages 418-428.
    2. Meghan R. Busse & Christopher R. Knittel & Florian Zettelmeyer, 2013. "Are Consumers Myopic? Evidence from New and Used Car Purchases," American Economic Review, American Economic Association, vol. 103(1), pages 220-256, February.
    3. Kenneth A. Small & Kurt Van Dender, 2007. "Fuel Efficiency and Motor Vehicle Travel: The Declining Rebound Effect," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 25-52.
    4. Kenneth Gillingham & Richard G. Newell & Karen Palmer, 2009. "Energy Efficiency Economics and Policy," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 597-620, September.
    5. Jody Overland & Christopher D. Carroll & David N. Weil, 2000. "Saving and Growth with Habit Formation," American Economic Review, American Economic Association, vol. 90(3), pages 341-355, June.
    6. Lin, C.-Y. Cynthia & Prince, Lea, 2013. "Gasoline price volatility and the elasticity of demand for gasoline," Energy Economics, Elsevier, vol. 38(C), pages 111-117.
    7. Stephen P. Holland & Erin T. Mansur & Nicholas Z. Muller & Andrew J. Yates, 2016. "Are There Environmental Benefits from Driving Electric Vehicles? The Importance of Local Factors," American Economic Review, American Economic Association, vol. 106(12), pages 3700-3729, December.
    8. Andrew Atkeson & Patrick J. Kehoe, 2007. "Modeling the Transition to a New Economy: Lessons from Two Technological Revolutions," American Economic Review, American Economic Association, vol. 97(1), pages 64-88, March.
    9. Hunt Allcott & Nathan Wozny, 2014. "Gasoline Prices, Fuel Economy, and the Energy Paradox," The Review of Economics and Statistics, MIT Press, vol. 96(5), pages 779-795, December.
    10. Robert S. Pindyck, 2013. "Climate Change Policy: What Do the Models Tell Us?," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 860-872, September.
    11. Blaise Allaz, 1992. "Oligopoly, uncertainty and strategic forward transactions," Post-Print hal-00511812, HAL.
    12. Nicholas Barberis & Ming Huang, 2001. "Mental Accounting, Loss Aversion, and Individual Stock Returns," NBER Working Papers 8190, National Bureau of Economic Research, Inc.
    13. Brons, Martijn & Nijkamp, Peter & Pels, Eric & Rietveld, Piet, 2008. "A meta-analysis of the price elasticity of gasoline demand. A SUR approach," Energy Economics, Elsevier, vol. 30(5), pages 2105-2122, September.
    14. Safarzynska, Karolina, 2012. "Modeling the rebound effect in two manufacturing industries," Technological Forecasting and Social Change, Elsevier, vol. 79(6), pages 1135-1154.
    15. Jensen, S. G. & Skytte, K., 2002. "Interactions between the power and green certificate markets," Energy Policy, Elsevier, vol. 30(5), pages 425-435, April.
    16. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    17. Steven T. Berry, 1994. "Estimating Discrete-Choice Models of Product Differentiation," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 242-262, Summer.
    18. Blaise Allaz & Jean-Luc Vila, 1993. "Cournot Competition, Forward Markets and Efficiency," Post-Print hal-00511806, HAL.
    19. Dominika Kalinowska & Hartmut Kuhfeld, 2006. "Motor Vehicle Use and Travel Behaviour in Germany: Determinants of Car Mileage," Discussion Papers of DIW Berlin 602, DIW Berlin, German Institute for Economic Research.
    20. Brookes, Leonard, 2000. "Energy efficiency fallacies revisited," Energy Policy, Elsevier, vol. 28(6-7), pages 355-366, June.
    21. Moreno, Blanca & López, Ana J. & García-Álvarez, María Teresa, 2012. "The electricity prices in the European Union. The role of renewable energies and regulatory electric market reforms," Energy, Elsevier, vol. 48(1), pages 307-313.
    22. Greene, David L., 2012. "Rebound 2007: Analysis of U.S. light-duty vehicle travel statistics," Energy Policy, Elsevier, vol. 41(C), pages 14-28.
    23. David L. Greene, 1992. "Vehicle Use and Fuel Economy: How Big is the "Rebound" Effect?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 117-144.
    24. Sorrell, Steve, 2009. "Jevons' Paradox revisited: The evidence for backfire from improved energy efficiency," Energy Policy, Elsevier, vol. 37(4), pages 1456-1469, April.
    25. Eising, Jan Willem & van Onna, Tom & Alkemade, Floortje, 2014. "Towards smart grids: Identifying the risks that arise from the integration of energy and transport supply chains," Applied Energy, Elsevier, vol. 123(C), pages 448-455.
    26. James A. Kahn, 1986. "Gasoline Prices and the Used Automobile Market: A Rational Expectations Asset Price Approach," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 101(2), pages 323-339.
    27. Allaz, Blaise, 1992. "Oligopoly, uncertainty and strategic forward transactions," International Journal of Industrial Organization, Elsevier, vol. 10(2), pages 297-308, June.
    28. Nicholas Barberis & Ming Huang, 2001. "Mental Accounting, Loss Aversion, and Individual Stock Returns," Journal of Finance, American Finance Association, vol. 56(4), pages 1247-1292, August.
    29. J. C. J. M. van den Bergh & W. J. W. Botzen, 2014. "A lower bound to the social cost of CO2 emissions," Nature Climate Change, Nature, vol. 4(4), pages 253-258, April.
    30. Kent M. Hymel & Kenneth Small, 2014. "The Rebound Effect for Automobile Travel:Asymmetric Response to Price Changes and Novel Features of the 2000s," Working Papers 141503, University of California-Irvine, Department of Economics.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Di Li & Qianbin Di & Hailin Mu & Zenglin Han & Hongye Wang & Ye Duan, 2022. "Research on the Impact of Output Adjustment Strategy and Carbon Trading Policy on the Response, Stability and Complexity of Steel Market under the Dynamic Game," Sustainability, MDPI, vol. 14(19), pages 1-40, September.
    2. Juana Castro & Stefan Drews & Filippos Exadaktylos & Joël Foramitti & Franziska Klein & Théo Konc & Ivan Savin & Jeroen van den Bergh, 2020. "A review of agent‐based modeling of climate‐energy policy," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 11(4), July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas, Brinda A. & Azevedo, Inês L., 2013. "Estimating direct and indirect rebound effects for U.S. households with input–output analysis Part 1: Theoretical framework," Ecological Economics, Elsevier, vol. 86(C), pages 199-210.
    2. Givord, Pauline & Grislain-Letrémy, Céline & Naegele, Helene, 2018. "How do fuel taxes impact new car purchases? An evaluation using French consumer-level data," Energy Economics, Elsevier, vol. 74(C), pages 76-96.
    3. Tscharaktschiew, Stefan, 2014. "Shedding light on the appropriateness of the (high) gasoline tax level in Germany," Economics of Transportation, Elsevier, vol. 3(3), pages 189-210.
    4. Aydin, Erdal, 2016. "Energy conservation in the residential sector : The role of policy and market forces," Other publications TiSEM b9cedba8-1310-4097-90fb-b, Tilburg University, School of Economics and Management.
    5. Winebrake, James J. & Green, Erin H. & Comer, Bryan & Corbett, James J. & Froman, Sarah, 2012. "Estimating the direct rebound effect for on-road freight transportation," Energy Policy, Elsevier, vol. 48(C), pages 252-259.
    6. Schleich, Joachim & Gassmann, Xavier & Faure, Corinne & Meissner, Thomas, 2016. "Making the implicit explicit: A look inside the implicit discount rate," Energy Policy, Elsevier, vol. 97(C), pages 321-331.
    7. Donna, Javier D., 2018. "Measuring Long-Run Price Elasticities in Urban Travel Demand," MPRA Paper 90059, University Library of Munich, Germany.
    8. Greene, David L. & Greenwald, Judith M. & Ciez, Rebecca E., 2020. "U.S. fuel economy and greenhouse gas standards: What have they achieved and what have we learned?," Energy Policy, Elsevier, vol. 146(C).
    9. Marrouch, Walid & Mourad, Jana, 2019. "Effect of gasoline prices on car fuel efficiency: Evidence from Lebanon," Energy Policy, Elsevier, vol. 135(C).
    10. Joshua Linn, 2016. "The Rebound Effect for Passenger Vehicles," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2).
    11. Dimitropoulos, Alexandros & Oueslati, Walid & Sintek, Christina, 2018. "The rebound effect in road transport: A meta-analysis of empirical studies," Energy Economics, Elsevier, vol. 75(C), pages 163-179.
    12. Cattaneo, Cristina, 2018. "Internal and External Barriers to Energy Efficiency: Made-to-Measure Policy Interventions," CSI: Climate and Sustainable Innovation 269536, Fondazione Eni Enrico Mattei (FEEM).
    13. Greene, David L. & Welch, Jilleah G., 2018. "Impacts of fuel economy improvements on the distribution of income in the U.S," Energy Policy, Elsevier, vol. 122(C), pages 528-541.
    14. van den Bijgaart, Inge, 2016. "Essays in environmental economics and policy," Other publications TiSEM 298bee2a-cb08-4173-9fe1-8, Tilburg University, School of Economics and Management.
    15. Yeh, Sonia & Burtraw, Dallas & Sterner, Thomas & Greene, David, 2021. "Tradable performance standards in the transportation sector," Energy Economics, Elsevier, vol. 102(C).
    16. Marz, Waldemar & Goetzke, Frank, 2022. "CAFE in the city — A spatial analysis of fuel economy standards," Journal of Environmental Economics and Management, Elsevier, vol. 115(C).
    17. Christopher R. Knittel & Shinsuke Tanaka, 2019. "Driving Behavior and the Price of Gasoline: Evidence from Fueling-Level Micro Data," NBER Working Papers 26488, National Bureau of Economic Research, Inc.
    18. Weber, Sylvain, 2019. "Consumers' preferences on the Swiss car market: A revealed preference approach," Transport Policy, Elsevier, vol. 75(C), pages 109-118.
    19. Su, Qing, 2012. "A quantile regression analysis of the rebound effect: Evidence from the 2009 National Household Transportation Survey in the United States," Energy Policy, Elsevier, vol. 45(C), pages 368-377.
    20. Cattaneo, Cristina, 2018. "Internal and External Barriers to Energy Efficiency: Made-to-Measure Policy Interventions," CSI: Climate and Sustainable Innovation 269536, Fondazione Eni Enrico Mattei (FEEM).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:74:y:2018:i:c:p:179-196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.